結果

問題 No.2747 Permutation Adjacent Sum
ユーザー koba-e964
提出日時 2025-02-17 13:02:26
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 423 ms / 3,000 ms
コード長 8,274 bytes
コンパイル時間 11,785 ms
コンパイル使用メモリ 401,968 KB
実行使用メモリ 9,908 KB
最終ジャッジ日時 2025-02-17 13:02:48
合計ジャッジ時間 20,367 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use std::io::Read;
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// https://ferin-tech.hatenablog.com/entry/2019/08/11/%E3%83%A9%E3%82%B0%E3%83%A9%E3%83%B3%E3%82%B8%E3%83%A5%E8%A3%9C%E9%96%93
// Finds f(t) given y[i] = f(x0 + d * i) for 0 <= i < y.len().
// O(y.len() * log MOD)-time
fn lagrange_interpolate_one_arithprog(y: &[MInt], x0: MInt, d: MInt, t: MInt) -> MInt {
assert_ne!(d, 0.into());
let n = y.len();
let mut sum = MInt::new(0);
// (x-x0-d*i)/((x-x0)...(x-x0-d*(n-1)))|_{x=x0+d*i}
let mut cur = MInt::new(1);
// (t-x0)...(t-x0-d*(n-1))
let mut tprod = MInt::new(1);
for i in 1..n {
cur *= -d * i as i64;
}
cur = cur.inv();
for i in 0..n {
if t == x0 + d * i as i64 {
return y[i];
}
tprod *= t - x0 - d * i as i64;
}
for i in 0..n {
sum += y[i] * cur * tprod * (t - x0 - d * i as i64).inv();
if i + 1 < n {
cur *= (n - i - 1) as i64;
cur *= -MInt::new((i + 1) as i64).inv();
}
}
sum
}
// Generated by 2747-helper.rs
const STEP: usize = 10000000;
const LEN: usize = 100;
const FACT_TABLE: [i64; 100] = [
1,
295201906,
160030060,
957629942,
545208507,
213689172,
760025067,
939830261,
506268060,
39806322,
808258749,
440133909,
686156489,
741797144,
390377694,
12629586,
544711799,
104121967,
495867250,
421290700,
117153405,
57084755,
202713771,
675932866,
79781699,
956276337,
652678397,
35212756,
655645460,
468129309,
761699708,
533047427,
287671032,
206068022,
50865043,
144980423,
111276893,
259415897,
444094191,
593907889,
573994984,
892454686,
566073550,
128761001,
888483202,
251718753,
548033568,
428105027,
742756734,
546182474,
62402409,
102052166,
826426395,
159186619,
926316039,
176055335,
51568171,
414163604,
604947226,
681666415,
511621808,
924112080,
265769800,
955559118,
763148293,
472709375,
19536133,
860830935,
290471030,
851685235,
242726978,
169855231,
612759169,
599797734,
961628039,
953297493,
62806842,
37844313,
909741023,
689361523,
887890124,
380694152,
669317759,
367270918,
806951470,
843736533,
377403437,
945260111,
786127243,
80918046,
875880304,
364983542,
623250998,
598764068,
804930040,
24257676,
214821357,
791011898,
954947696,
183092975,
];
// https://yukicoder.me/problems/no/2747 (3.5)
// solved with hints
// \sum_{1 <= i <= N} (N-i)i^K K O(K log K)-time
// -> K+2 0 <= i <= K+2 K+3
// (N-2)! * (N-1) * 2
// - (N-2)!:
// - (N-1):
// - 2:
// Tags: lagrange-polynomial-interpolation, lagrange-interpolation
fn main() {
let n: i64 = get();
let k: i64 = get();
let mut y = vec![];
let mut sum = MInt::new(0);
for i in 0..k + 3 {
sum += MInt::new(i).pow(k) * (n - i);
y.push(sum);
}
let mut ans = lagrange_interpolate_one_arithprog(&y, 0.into(), 1.into(), n.into());
ans *= 2;
let tbl_idx = ((n - 1) as usize / STEP).min(LEN - 1);
let mut fac = MInt::new(FACT_TABLE[tbl_idx]);
for i in tbl_idx * STEP + 1..=(n - 1) as usize {
fac *= i as i64;
}
ans *= fac;
println!("{ans}");
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0