結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー |
|
提出日時 | 2025-02-17 13:02:26 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 423 ms / 3,000 ms |
コード長 | 8,274 bytes |
コンパイル時間 | 11,785 ms |
コンパイル使用メモリ | 401,968 KB |
実行使用メモリ | 9,908 KB |
最終ジャッジ日時 | 2025-02-17 13:02:48 |
合計ジャッジ時間 | 20,367 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 40 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// https://ferin-tech.hatenablog.com/entry/2019/08/11/%E3%83%A9%E3%82%B0%E3%83%A9%E3%83%B3%E3%82%B8%E3%83%A5%E8%A3%9C%E9%96%93// Finds f(t) given y[i] = f(x0 + d * i) for 0 <= i < y.len().// O(y.len() * log MOD)-timefn lagrange_interpolate_one_arithprog(y: &[MInt], x0: MInt, d: MInt, t: MInt) -> MInt {assert_ne!(d, 0.into());let n = y.len();let mut sum = MInt::new(0);// (x-x0-d*i)/((x-x0)...(x-x0-d*(n-1)))|_{x=x0+d*i}let mut cur = MInt::new(1);// (t-x0)...(t-x0-d*(n-1))let mut tprod = MInt::new(1);for i in 1..n {cur *= -d * i as i64;}cur = cur.inv();for i in 0..n {if t == x0 + d * i as i64 {return y[i];}tprod *= t - x0 - d * i as i64;}for i in 0..n {sum += y[i] * cur * tprod * (t - x0 - d * i as i64).inv();if i + 1 < n {cur *= (n - i - 1) as i64;cur *= -MInt::new((i + 1) as i64).inv();}}sum}// Generated by 2747-helper.rsconst STEP: usize = 10000000;const LEN: usize = 100;const FACT_TABLE: [i64; 100] = [1,295201906,160030060,957629942,545208507,213689172,760025067,939830261,506268060,39806322,808258749,440133909,686156489,741797144,390377694,12629586,544711799,104121967,495867250,421290700,117153405,57084755,202713771,675932866,79781699,956276337,652678397,35212756,655645460,468129309,761699708,533047427,287671032,206068022,50865043,144980423,111276893,259415897,444094191,593907889,573994984,892454686,566073550,128761001,888483202,251718753,548033568,428105027,742756734,546182474,62402409,102052166,826426395,159186619,926316039,176055335,51568171,414163604,604947226,681666415,511621808,924112080,265769800,955559118,763148293,472709375,19536133,860830935,290471030,851685235,242726978,169855231,612759169,599797734,961628039,953297493,62806842,37844313,909741023,689361523,887890124,380694152,669317759,367270918,806951470,843736533,377403437,945260111,786127243,80918046,875880304,364983542,623250998,598764068,804930040,24257676,214821357,791011898,954947696,183092975,];// https://yukicoder.me/problems/no/2747 (3.5)// solved with hints// \sum_{1 <= i <= N} (N-i)i^K が計算できれば良い。これはベルヌーイ数の先頭 K 項が O(K log K)-time 程度で計算できれば計算できる。// -> 解説を見た。ラグランジュ補間の方が簡単。最終的な多項式は K+2 次なので、0 <= i <= K+2 の K+3 点で補間する。// 最後に (N-2)! * (N-1) * 2 を掛けること。// - (N-2)!: 残りの点の埋め方// - (N-1): どの隙間を見るか// - 2: 左の方が大きいか// Tags: lagrange-polynomial-interpolation, lagrange-interpolationfn main() {let n: i64 = get();let k: i64 = get();let mut y = vec![];let mut sum = MInt::new(0);for i in 0..k + 3 {sum += MInt::new(i).pow(k) * (n - i);y.push(sum);}let mut ans = lagrange_interpolate_one_arithprog(&y, 0.into(), 1.into(), n.into());ans *= 2;let tbl_idx = ((n - 1) as usize / STEP).min(LEN - 1);let mut fac = MInt::new(FACT_TABLE[tbl_idx]);for i in tbl_idx * STEP + 1..=(n - 1) as usize {fac *= i as i64;}ans *= fac;println!("{ans}");}