結果
問題 | No.3033 エルハートの数え上げ |
ユーザー |
|
提出日時 | 2025-02-21 22:50:55 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,382 ms / 2,000 ms |
コード長 | 21,211 bytes |
コンパイル時間 | 7,498 ms |
コンパイル使用メモリ | 316,860 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2025-02-21 22:51:41 |
合計ジャッジ時間 | 31,343 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
// QCFium 法//#pragma GCC target("avx2") // yukicoder では消す#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#ifndef HIDDEN_IN_VS // 折りたたみ用// 警告の抑制#define _CRT_SECURE_NO_WARNINGS// ライブラリの読み込み#include <bits/stdc++.h>using namespace std;// 型名の短縮using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;using Graph = vvi;// 定数の定義const double PI = acos(-1);int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)int DY[4] = { 0, 1, 0, -1 };int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;// 入出力高速化struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;// 汎用マクロの定義#define all(a) (a).begin(), (a).end()#define sz(x) ((int)(x).size())#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定// 汎用関数の定義template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら trueを返す)template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら trueを返す)template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod// 演算子オーバーロードtemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }#endif // 折りたたみ用#if __has_include(<atcoder/all>)#include <atcoder/all>using namespace atcoder;#ifdef _MSC_VER#include "localACL.hpp"#endifusing mint = modint998244353;//using mint = static_modint<(ll)1e9+7>;//using mint = modint; // mint::set_mod(m);namespace atcoder {inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }}using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;#endif#ifdef _MSC_VER // 手元環境(Visual Studio)#include "local.hpp"#else // 提出用(gcc)inline int popcount(int n) { return __builtin_popcount(n); }inline int popcount(ll n) { return __builtin_popcountll(n); }inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }#define dump(...)#define dumpel(v)#define dump_math(v)#define input_from_file(f)#define output_to_file(f)#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す#endif//【線形漸化式の発見】O(n^2)/** 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..m) で m を最小とするものを返す:* a[i] = Σj∈[0..m) c[j] a[i-1-j] (∀i∈[m..n))** 制約 : mint::mod は素数*/vm berlekamp_massey(const vm& a) {// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm// verify : https://judge.yosupo.jp/problem/find_linear_recurrencevm S(a), C{ 1 }, B{ 1 };int N = sz(a), m = 1; mint b = 1;rep(n, N) {mint d = 0;rep(i, sz(C)) d += C[i] * S[n - i];if (d == 0) {m++;}else if (2 * (sz(C) - 1) <= n) {vm T(C);mint coef = d * b.inv();C.resize(max(sz(C), sz(B) + m));rep(j, sz(B)) C[j + m] -= coef * B[j];B = T;b = d;m = 1;}else {mint coef = d * b.inv();C.resize(max(sz(C), sz(B) + m));rep(j, sz(B)) C[j + m] -= coef * B[j];m++;}}C.erase(C.begin());rep(i, sz(C)) C[i] *= -1;return C;}//【形式的冪級数】/** MFPS() : O(1)* 零多項式 f = 0 で初期化する.** MFPS(mint c0) : O(1)* 定数多項式 f = c0 で初期化する.** MFPS(mint c0, int n) : O(n)* n 次未満の項をもつ定数多項式 f = c0 で初期化する.** MFPS(vm c) : O(n)* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.** set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)* 畳込み用の関数を CONV に設定する.** c + f, f + c : O(1) f + g : O(n)* f - c : O(1) c - f, f - g, -f : O(n)* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|)* f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|)* 形式的冪級数としての和,差,積,商の結果を返す.* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.* 制約 : 商では g(0) != 0** MFPS f.inv(int d) : O(n log n)* 1 / f mod z^d を返す.* 制約 : f(0) != 0** MFPS f.quotient(MFPS g) : O(n log n)* MFPS f.reminder(MFPS g) : O(n log n)* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)* 多項式としての f を g で割った商,余り,商と余りの組を返す.* 制約 : g の最高次の係数は 0 でない** int f.deg(), int f.size() : O(1)* 多項式 f の次数[項数]を返す.** MFPS::monomial(int d, mint c = 1) : O(d)* 単項式 c z^d を返す.** mint f.assign(mint c) : O(n)* 多項式 f の不定元 z に c を代入した値を返す.** f.resize(int d) : O(1)* mod z^d をとる.** f.resize() : O(n)* 不要な高次の項を削る.** f >> d, f << d : O(n)* 係数列を d だけ右[左]シフトした多項式を返す.* (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)** f.push_back(c) : O(1)* 最高次の係数として c を追加する.*/struct MFPS {using SMFPS = vector<pim>;int n; // 係数の個数(次数 + 1)vm c; // 係数列inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数// コンストラクタ(0,定数,係数列で初期化)MFPS() : n(0) {}MFPS(mint c0) : n(1), c({ c0 }) {}MFPS(int c0) : n(1), c({ mint(c0) }) {}MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }MFPS(const vm& c_) : n(sz(c_)), c(c_) {}MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }// 代入MFPS(const MFPS& f) = default;MFPS& operator=(const MFPS& f) = default;MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }void push_back(mint cn) { c.emplace_back(cn); ++n; }void pop_back() { c.pop_back(); --n; }[[nodiscard]] mint back() { return c.back(); }// 比較[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }// アクセスinline mint const& operator[](int i) const { return c[i]; }inline mint& operator[](int i) { return c[i]; }// 次数[[nodiscard]] int deg() const { return n - 1; }[[nodiscard]] int size() const { return n; }static void set_conv(vm(*CONV_)(const vm&, const vm&)) {// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacciCONV = CONV_;}// 加算MFPS& operator+=(const MFPS& g) {if (n >= g.n) rep(i, g.n) c[i] += g.c[i];else {rep(i, n) c[i] += g.c[i];repi(i, n, g.n - 1) c.push_back(g.c[i]);n = g.n;}return *this;}[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }// 定数加算MFPS& operator+=(const mint& sc) {if (n == 0) { n = 1; c = { sc }; }else { c[0] += sc; }return *this;}[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }// 減算MFPS& operator-=(const MFPS& g) {if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];else {rep(i, n) c[i] -= g.c[i];repi(i, n, g.n - 1) c.push_back(-g.c[i]);n = g.n;}return *this;}[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }// 定数減算MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }MFPS& operator-=(const int& sc) { *this += -sc; return *this; }[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }// 加法逆元[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }// 定数倍MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }// 右からの定数除算MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }// 積MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }// 除算[[nodiscard]] MFPS inv(int d) const {// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series//【方法】// 1 / f mod z^d を求めることは,// f g = 1 (mod z^d)// なる g を求めることである.// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.//// d = 1 のときについては// g = 1 / f[0] (mod z^1)// である.//// 次に,// g = h (mod z^k)// が求まっているとして// g mod z^(2 k)// を求める.最初の式を変形していくことで// g - h = 0 (mod z^k)// ⇒ (g - h)^2 = 0 (mod z^(2 k))// ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))// ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より)// ⇔ g = (2 - f h) h (mod z^(2 k))// を得る.//// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.Assert(!c.empty());Assert(c[0] != 0);MFPS g(c[0].inv());for (int k = 1; k < d; k <<= 1) {int len = max(min(2 * k, d), 1);MFPS tmp(0, len);rep(i, min(len, n)) tmp[i] = -c[i]; // -ftmp *= g; // -f htmp.resize(len);tmp[0] += 2; // 2 - f hg *= tmp; // (2 - f h) hg.resize(len);}return g;}MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }// 余り付き除算[[nodiscard]] MFPS quotient(const MFPS& g) const {// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp// verify : https://judge.yosupo.jp/problem/division_of_polynomials//【方法】// f(x) = g(x) q(x) + r(x) となる q(x) を求める.// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)// 従って q の次数は n-m,r の次数は m-2 となる.//// f^R で f の係数列を逆順にした多項式を表す.すなわち// f^R(x) := f(1/x) x^(n-1)// である.他の多項式も同様とする.//// 最初の式で x → 1/x と置き換えると,// f(1/x) = g(1/x) q(1/x) + r(1/x)// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))// を得る.//// これで q を mod x^(n-m+1) で正しく求めることができることになるが,// q の次数は n-m であったから,q 自身を正しく求めることができた.if (n < g.n) return MFPS();return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();}[[nodiscard]] MFPS reminder(const MFPS& g) const {// verify : https://judge.yosupo.jp/problem/division_of_polynomialsreturn (*this - this->quotient(g) * g).resize();}[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {// verify : https://judge.yosupo.jp/problem/division_of_polynomialspair<MFPS, MFPS> res;res.first = this->quotient(g);res.second = (*this - res.first * g).resize();return res;}// スパース積MFPS& operator*=(const SMFPS& g) {// g の定数項だけ例外処理auto it0 = g.begin();mint g0 = 0;if (it0->first == 0) {g0 = it0->second;it0++;}// 後ろからインライン配る DPrepir(i, n - 1, 0) {// 上位項に係数倍して配っていく.for (auto it = it0; it != g.end(); it++) {auto [j, gj] = *it;if (i + j >= n) break;c[i + j] += c[i] * gj;}// 定数項は最後に配るか消去しないといけない.c[i] *= g0;}return *this;}[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }// スパース商MFPS& operator/=(const SMFPS& g) {// g の定数項だけ例外処理auto it0 = g.begin();Assert(it0->first == 0 && it0->second != 0);mint g0_inv = it0->second.inv();it0++;// 前からインライン配る DP(後ろに累積効果あり)rep(i, n) {// 定数項は最初に配らないといけない.c[i] *= g0_inv;// 上位項に係数倍して配っていく.for (auto it = it0; it != g.end(); it++) {auto [j, gj] = *it;if (i + j >= n) break;c[i + j] -= c[i] * gj;}}return *this;}[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }// 係数反転[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }// 単項式[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {MFPS mono(0, d + 1);mono[d] = coef;return mono;}// 不要な高次項の除去MFPS& resize() {// 最高次の係数が非 0 になるまで削る.while (n > 0 && c[n - 1] == 0) {c.pop_back();n--;}return *this;}// x^d 以上の項を除去する.MFPS& resize(int d) {n = d;c.resize(d);return *this;}// 不定元への代入[[nodiscard]] mint assign(const mint& x) const {mint val = 0;repir(i, n - 1, 0) val = val * x + c[i];return val;}// 係数のシフトMFPS& operator>>=(int d) {n += d;c.insert(c.begin(), d, 0);return *this;}MFPS& operator<<=(int d) {n -= d;if (n <= 0) { c.clear(); n = 0; }else c.erase(c.begin(), c.begin() + d);return *this;}[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }#ifdef _MSC_VERfriend ostream& operator<<(ostream& os, const MFPS& f) {if (f.n == 0) os << 0;else {rep(i, f.n) {os << f[i] << "z^" << i;if (i < f.n - 1) os << " + ";}}return os;}#endif};//【展開係数】O(n log n log N)/** [z^N] f(z)/g(z) を返す.** 制約 : deg f < deg g, g[0] != 0*/mint bostan_mori(MFPS f, MFPS g, ll N) {// 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence//【方法】// 分母分子に g(-z) を掛けることにより// f(z) / g(z) = f(z) g(-z) / g(z) g(-z)// を得る.ここで g(z) g(-z) は偶多項式なので// g(z) g(-z) = e(z^2)// と表すことができる.//// 分子について// f(z) g(-z) = E(z^2) + z O(z^2)// というように偶多項式部分と奇多項式部分に分けると,N が偶数のときは// [z^N] f(z) g(-z) / g(z) g(-z)// = [z^N] E(z^2) / e(z^2)// = [z^(N/2)] E(z) / e(z)// となり,N が奇数のときは// [z^N] f(z) g(-z) / g(z) g(-z)// = [z^N] z O(z^2) / e(z^2)// = [z^((N-1)/2)] O(z) / e(z)// となる.//// これを繰り返せば N を半分ずつに減らしていくことができる.Assert(g.n >= 1 && g[0] != 0);// f(z) = 0 のときは 0 を返す.if (f.n == 0) return 0;while (N > 0) {// f2(z) = f(z) g(-z), g2(z) = g(z) g(-z) を求める.MFPS f2, g2 = g;rep(i, g2.n) if (i & 1) g2[i] *= -1;f2 = f * g2;g2 *= g;// f3(z) = E(z) or O(z), g3(z) = e(z) を求める.f.c.clear(); g.c.clear();if (N & 1) rep(i, min<ll>(f2.n / 2, N / 2 + 1)) f.c.push_back(f2[2 * i + 1]);else rep(i, min<ll>((f2.n + 1) / 2, N / 2 + 1)) f.c.push_back(f2[2 * i]);f.n = sz(f.c);rep(i, min<ll>((g2.n + 1) / 2, N / 2 + 1)) g.c.push_back(g2[2 * i]);g.n = sz(g.c);// N を半分にして次のステップに進む.N /= 2;}// N = 0 になったら定数項を返す.return f[0] / g[0];}//【線形漸化式】O(n log n log N)/** 初項 a[0..n) と漸化式 a[i] = Σj∈[0..n) c[j] a[i-1-j] で定義される* 数列 a について,a[N] の値を返す.** 利用:【展開係数】*/mint linearly_recurrent_sequence(const vm& a, const vm& c, ll N) {// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequenceint n = sz(c);if (n == 0) return 0;MFPS A(a), C(c);MFPS Dnm = 1 - (C >> 1);MFPS Num = (Dnm * A).resize(n);return bostan_mori(Num, Dnm, N);}int main() {// input_from_file("input.txt");// output_to_file("output.txt");ll K; int n;cin >> K >> n;vl a(n), b(n), c(n), d(n);rep(i, n) cin >> a[i] >> b[i] >> c[i] >> d[i];int L = 15;vm seq;repi(t, 1, 10) {int B = 0;repi(x, -t * L, t * L) repi(y, -t * L, t * L) repi(z, -t * L, t * L) {bool ok = true;rep(i, n) {ll s = a[i] * x + b[i] * y + c[i] * z + t * d[i];if (s <= 0) {ok = false;break;}}if (!ok) continue;B++;}seq.push_back(B);}dump(seq);auto coef = berlekamp_massey(seq);dump(coef);seq.resize(sz(coef));EXIT(linearly_recurrent_sequence(seq, coef, K - 1));}