結果

問題 No.2464 To DAG
ユーザー umimel
提出日時 2025-02-22 04:45:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 263 ms / 2,000 ms
コード長 4,526 bytes
コンパイル時間 2,054 ms
コンパイル使用メモリ 178,104 KB
実行使用メモリ 31,108 KB
最終ジャッジ日時 2025-02-22 04:46:04
合計ジャッジ時間 20,040 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 39
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 2;


template<typename T> 
struct edge{
    int from;
    int to;
    T cost;
    int id;

    edge(){}
    edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}

    void reverse(){swap(from, to);}
};

template<typename T>
struct edges : std::vector<edge<T>>{
    void sort(){
        std::sort(
            (*this).begin(),
            (*this).end(), 
            [](const edge<T>& a, const edge<T>& b){
                return a.cost < b.cost;
            }
        );
    }
};

template<typename T = bool>
struct graph : std::vector<edges<T>>{
private:
    int n = 0;
    int m = 0;
    edges<T> es;
    bool dir;

public:
    graph(int n, bool dir) : n(n), dir(dir){
        (*this).resize(n);
    }

    void add_edge(int from, int to, T cost=1){
        if(dir){
            es.push_back(edge<T>(from, to, cost, m));
            (*this)[from].push_back(edge<T>(from, to, cost, m++));
        }else{
            if(from > to) swap(from, to);
            es.push_back(edge<T>(from, to, cost, m));
            (*this)[from].push_back(edge<T>(from, to, cost, m));
            (*this)[to].push_back(edge<T>(to, from, cost, m++));
        }
    }

    int get_vnum(){
        return n;
    }

    int get_enum(){
        return m;
    }

    bool get_dir(){
        return dir;
    }

    edge<T> get_edge(int i){
        return es[i];
    }

    edges<T> get_edge_set(){
        return es;
    }
};

template<typename T>
struct redge{
    int from, to;
    T cap, cost;
    int rev;
    
    redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
    redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};

template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;


template<typename S>
static vector<vector<int>> decompose_maximal_cycles(graph<S> &G){
    int n = G.get_vnum(); // the number of vertices
    int m = G.get_enum(); // the number of edges
    vector<bool> visited(n, false); // visited flag
    vector<vector<int>> cycles; // the set of cycles
    vector<int> idx(n, -1); // the index of the edge
    vector<int> vst; // stack maintaining the vertices

    for(int r=0; r<n; r++){
        vst.push_back(r);
        visited[r] = true;
        while(!vst.empty()){
            int v = vst.back();
            if((int)G[v].size() <= ++idx[v]){
                visited[v] = false;
                vst.pop_back();
                continue;
            }
            auto e = G[v][idx[v]];
            if(visited[e.to]){
                vector<int> cyc;
                cyc.push_back(e.id);
                while(v != e.to){
                    vst.pop_back();
                    visited[v] = false;
                    v = vst.back();
                    cyc.push_back(G[v][idx[v]].id);
                }
                reverse(cyc.begin(), cyc.end());
                cycles.push_back(cyc);
            }else{
                visited[e.to] = true;
                vst.push_back(e.to);
            }
        }
        visited[r] = false;
    }

    return cycles;
}

void solve(){
    int n, m; cin >> n >> m;
    graph<int> G(n, true);
    for(int i=0; i<m; i++){
        int u, v; cin >> u >> v;
        G.add_edge(u-1, v-1);
    }

    auto cycles = decompose_maximal_cycles(G);
    vector<bool> rest(m, true);
    int cnt = m;
    for(auto cyc : cycles){
        for(auto i : cyc){
            cnt--;
            rest[i] = false;
        }
    }

    cout << n << ' ' << cnt << '\n';
    for(int i=0; i<m; i++) if(rest[i]){
        auto e = G.get_edge(i);
        cout << e.from+1 << " " << e.to+1 << '\n';
    }

}

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    
    int T=1;
    //cin >> T;
    while(T--) solve();
}
0