結果
問題 | No.2959 Dolls' Tea Party |
ユーザー |
|
提出日時 | 2025-02-23 00:31:38 |
言語 | Rust (1.83.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,475 bytes |
コンパイル時間 | 14,007 ms |
コンパイル使用メモリ | 397,752 KB |
実行使用メモリ | 13,640 KB |
最終ジャッジ日時 | 2025-02-23 00:32:01 |
合計ジャッジ時間 | 21,089 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 2 TLE * 1 -- * 30 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;#[allow(unused_imports)]use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, chars) => {read_value!($next, String).chars().collect::<Vec<char>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, [ $t:tt ]) => {{let len = read_value!($next, usize);read_value!($next, [$t; len])}};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}// https://yukicoder.me/problems/no/2959 (4)// Bernstein の定理を使う。K の約数 d について、自由度が d であるものを数え上げて K/d を掛ければ良い。// https://gist.github.com/dario2994/fb4713f252ca86c1254d によると max {#divisor(x) | x <= 1300} = 36 なので計算量的に問題ない。// -> 掛けるのは K/d ではなく (K/d のうちより大きい d に対応する元でない元の個数) = phi(K / d) であった。// これにより、例えば (操作 = e に対応する元を数えるとき) d = K のとき数えた要素を d < K でまた数えることがなくなる。fn main() {input! {n: usize, k: usize,a: [usize; n],}let (fac, invfac) = fact_init(k + 1);let mut ans = MInt::new(0);let mut pr = vec![true; k + 1];pr[0] = false;pr[1] = false;for i in 2..k + 1 {if !pr[i] {continue;}for j in (2 * i..k + 1).step_by(i) {pr[j] = false;}}for d in 1..k + 1 {if k % d != 0 {continue;}let mul = k / d;let mut phi = mul;for i in 2..mul + 1 {if pr[i] && mul % i == 0 {phi = phi / i * (i - 1);}}let mut dp = vec![MInt::new(0); d + 1];dp[0] += 1;for &a in &a {let a = a / mul;let mut ep = vec![MInt::new(0); d + 1];for j in 0..d + 1 {for i in 0..j.min(a) + 1 {ep[j] += dp[j - i] * invfac[i];}}dp = ep;}ans += dp[d] * fac[d] * phi as i64;}println!("{}", ans * MInt::new(k as i64).inv());}