結果
問題 | No.318 学学学学学 |
ユーザー |
|
提出日時 | 2025-02-24 20:24:58 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 67 ms / 2,000 ms |
コード長 | 10,311 bytes |
コンパイル時間 | 4,576 ms |
コンパイル使用メモリ | 309,436 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2025-02-24 20:25:07 |
合計ジャッジ時間 | 8,350 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 |
ソースコード
// competitive-verifier: PROBLEM #include <algorithm> #include <iterator> #include <vector> /** * @brief 座標圧縮 * * @tparam T 要素の型 */ template <class T> struct coordinate_compression { coordinate_compression() = default; coordinate_compression(const std::vector<T> &_data) : data(_data) { build(); } const T &operator[](int i) const { return data[i]; } void add(T x) { data.emplace_back(x); } void build() { std::sort(data.begin(), data.end()); data.erase(std::unique(data.begin(), data.end()), data.end()); } bool exists(T x) const { auto it = std::lower_bound(data.begin(), data.end(), x); return it != data.end() && *it == x; } int get(T x) const { auto it = std::lower_bound(data.begin(), data.end(), x); return std::distance(data.begin(), it); } int size() const { return data.size(); } private: std::vector<T> data; }; /** * @brief 座標圧縮 * * @tparam T 要素の型 * @param v 配列 * @return std::vector<T> */ template <class T> std::vector<int> compress(const std::vector<T> &v) { coordinate_compression cps(v); std::vector<int> res; res.reserve(std::size(v)); for (auto &&x : v) res.emplace_back(cps.get(x)); return res; } #include <cassert> namespace internal { // @return same with std::bit::bit_ceil unsigned int bit_ceil(unsigned int n) { unsigned int x = 1; while (x < (unsigned int)(n)) x *= 2; return x; } // @param n `1 <= n` // @return same with std::bit::countl_zero int countl_zero(unsigned int n) { return __builtin_clz(n); } // @param n `1 <= n` // @return same with std::bit::countr_zero int countr_zero(unsigned int n) { return __builtin_ctz(n); } // @param n `1 <= n` // @return same with std::bit::countr_zero constexpr int countr_zero_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } } // namespace internal #include <limits> #include <numeric> #include <utility> template <class T> struct Add { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs + rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs + rhs; } }; template <class T> struct Mul { using value_type = T; static constexpr T id() { return T(1); } static constexpr T op(const T &lhs, const T &rhs) { return lhs * rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs * rhs; } }; template <class T> struct And { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs & rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs & rhs; } }; template <class T> struct Or { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs | rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs | rhs; } }; template <class T> struct Xor { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs ^ rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs ^ rhs; } }; template <class T> struct Min { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return std::min(lhs, rhs); } template <class U> static constexpr U f(T lhs, U rhs) { return std::min((U)lhs, rhs); } }; template <class T> struct Max { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::lowest(); } static constexpr T op(const T &lhs, const T &rhs) { return std::max(lhs, rhs); } template <class U> static constexpr U f(T lhs, U rhs) { return std::max((U)lhs, rhs); } }; template <class T> struct Gcd { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Gcd::id() ? rhs : (rhs == Gcd::id() ? lhs : std::gcd(lhs, rhs)); } }; template <class T> struct Lcm { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Lcm::id() ? rhs : (rhs == Lcm::id() ? lhs : std::lcm(lhs, rhs)); } }; template <class T> struct Update { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Update::id() ? rhs : lhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs == Update::id() ? rhs : lhs; } }; template <class T> struct Affine { using P = std::pair<T, T>; using value_type = P; static constexpr P id() { return P(1, 0); } static constexpr P op(P lhs, P rhs) { return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second}; } }; template <class M> struct Rev { using T = typename M::value_type; using value_type = T; static constexpr T id() { return M::id(); } static constexpr T op(T lhs, T rhs) { return M::op(rhs, lhs); } }; /** * @brief 双対セグメント木 * * @tparam M モノイド */ template <class M> struct dual_segment_tree { private: using T = typename M::value_type; public: dual_segment_tree() : dual_segment_tree(0) {} explicit dual_segment_tree(int n, T e = M::id()) : dual_segment_tree(std::vector<T>(n, e)) {} template <class U> explicit dual_segment_tree(const std::vector<U> &v) : _n(v.size()) { _size = internal::bit_ceil(_n); _log = internal::countr_zero(_size); data = std::vector<T>(_size << 1, M::id()); for (int i = 0; i < _n; ++i) data[_size + i] = T(v[i]); } T at(int k) { return get(k); } T get(int k) { assert(0 <= k && k < _n); k += _size; for (int i = _log; i >= 1; --i) push(k >> i); return data[k]; } void apply(int a, T val) { apply(a, a + 1, val); } void apply(int a, int b, T val) { assert(0 <= a && a <= _n); assert(0 <= b && b <= _n); a += _size, b += _size; for (int i = _log; i >= 1; --i) { if (((a >> i) << i) != a) push(a >> i); if (((b >> i) << i) != b) push((b - 1) >> i); } for (; a < b; a >>= 1, b >>= 1) { if (a & 1) all_apply(a++, val); if (b & 1) all_apply(--b, val); } } private: int _n, _size, _log; std::vector<T> data; void all_apply(int k, T val) { data[k] = M::op(val, data[k]); } void push(int k) { all_apply(2 * k, data[k]); all_apply(2 * k + 1, data[k]); data[k] = M::id(); } }; #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } int main(void) { int n; cin >> n; vector<int> a(n); cin >> a; coordinate_compression cps(a); auto b = compress(a); dual_segment_tree<Update<int>> seg(n); vector<int> l(cps.size(), Inf), r(cps.size()); rep (i, n) { chmin(l[b[i]], i); chmax(r[b[i]], i); } rep (i, cps.size()) { seg.apply(l[i], r[i] + 1, cps[i]); } vector<int> ans(n); rep (i, n) ans[i] = seg.get(i); co(ans); return 0; }