結果

問題 No.3078 Difference Sum Query
ユーザー 👑 p-adic
提出日時 2025-02-24 21:48:57
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 355 ms / 2,000 ms
コード長 44,225 bytes
コンパイル時間 15,902 ms
コンパイル使用メモリ 319,436 KB
実行使用メモリ 21,628 KB
最終ジャッジ日時 2025-02-24 22:55:59
合計ジャッジ時間 21,035 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #

// 入力制約/フォーマットチェック
#ifndef INCLUDE_MODE
  #define INCLUDE_MODE
  // #define REACTIVE
  #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN

void Solve()
{
  CEXPR( int , bound_NQ , 1e5 );
  GETLINE_COUNT( NQ_str , 2 , ' ' );
  STOI( NQ_str , N , 1 , bound_NQ );
  STOI( NQ_str , Q , 1 , bound_NQ );
  CEXPR( ll , bound_AX , 1e10 );
  GETLINE_COUNT( A_str , N , ' ' );
  STOI_A( A_str , 0 , N , A , 1 , bound_AX );
  vector<Tuple<int,int,ll>> query( Q );
  FOR( q , 0 , Q ){
    GETLINE_COUNT( lrX_str , 3 , ' ' );
    STOI( lrX_str , l , 1 , N );
    STOI( lrX_str , r , l , N );
    STOI( lrX_str , X , 1 , bound_AX );
    --l; --r;
    query[q] = {l,r,X};
  }
  vector<ll> answer( Q );
  set<Tuple<ll,int,bool>> event{};
  FOR( i , 0 , N ){
    event += {A[i],i,false};
  }
  FOR( q , 0 , Q ){
    auto& [l,r,X] = query[q];
    event += {X,q,true};
  }
  BIT bitA{ A };
  BIT bitX{ vector<int>( N , -1 ) };
  RUN( event , [x,i,output] ){
    if( output ){
      auto& [l,r,X] = query[i];
      answer[i] = bitA.IntervalSum( l , r ) + ll( X ) * bitX.IntervalSum( l , r );
    } else {
      bitA.Set( i , -x );
      bitX.Set( i , 1 );
    }
  }  
  RUN( answer , val ){
    COUT( val );
  }
}
REPEAT_MAIN(1);

#else // INCLUDE_MAIN
#ifdef INCLUDE_LIBRARY

// https://github.com/p-adic/cpp
// VVV ライブラリは以下に挿入する。

/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
// redefinitionを避けるため圧縮元はincludeしない。

/* Module (6KB)*/
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>& AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}

TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};
TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}

TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};
TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}

TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TY MAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMA magma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);};
TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY U,TY MAGMA> IN U RegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));}

#define SFINAE_FOR_BIT_BS enable_if_t<is_invocable_r_v<bool,F,U,int>>*
TE <TY U,TY ABELIAN_GROUP>CL AbstractBIT{PU:ABELIAN_GROUP m_M;int m_SZ;VE<U> m_fenwick;int m_PW;IN AbstractBIT(ABELIAN_GROUP M,CRI SZ = 0);IN AbstractBIT(ABELIAN_GROUP M,CO VE<U>& a);TE <TY...Args> IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);VO Add(CRI i,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i);IN U Get(CRI i);IN CO U& LSBSegmentSum(CRI j)CO;U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> int Search(CO F& f);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> IN int Search(CRI i_start,CO F& f);IN int Search(CO U& u);IN int Search(CRI i_start,CO U& u);IN VO COruct();};TE <TY ABELIAN_GROUP,TY...Args> AbstractBIT(ABELIAN_GROUP M,CO Args&... args)-> AbstractBIT<inner_t<ABELIAN_GROUP>,ABELIAN_GROUP>;TE <TY U = ll>CL BIT:PU AbstractBIT<U,AdditiveGroup<U>>{PU:TE <TY...Args> IN BIT(CO Args&... args);};TE <TY U> BIT(CO VE<U>& a)-> BIT<U>;
TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();}TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CO VE<U>& a):m_M(MO(M)),m_SZ(a.SZ()),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j = m_M.Sum(MO(fenwick_j),m_fenwick[i]);i -=(i & -i);}}}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::COruct(){ST_AS(is_same_v<U,inner_t<ABELIAN_GROUP>>);WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY U> TE <TY...Args> IN BIT<U>::BIT(CO Args&... args):AbstractBIT<U,AdditiveGroup<U>>(AdditiveGroup<U>(),args...){}TE <TY U,TY ABELIAN_GROUP> TE <TY...Args> IN VO AbstractBIT<U,ABELIAN_GROUP>::Initialise(CO Args&... args){AbstractBIT<U,ABELIAN_GROUP> temp{m_M,args...};m_SZ = temp.m_SZ;m_fenwick = MO(temp.m_fenwick);m_PW = temp.m_PW;}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE <TY U,TY ABELIAN_GROUP>VO AbstractBIT<U,ABELIAN_GROUP>::Add(CRI i,CO U& u){int j = i + 1;WH(j <= m_SZ){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),u);j +=(j & -j);}RE;}TE <TY U,TY ABELIAN_GROUP> IN CRI AbstractBIT<U,ABELIAN_GROUP>::SZ()CO NE{RE m_SZ;}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::OP[](CRI i){AS(0 <= i && i < m_SZ);RE IntervalSum(i,i);}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::Get(CRI i){RE OP[](i);}TE <TY U,TY ABELIAN_GROUP> IN CO U& AbstractBIT<U,ABELIAN_GROUP>::LSBSegmentSum(CRI j)CO{AS(0 < j && j <= m_SZ);RE m_fenwick[j];}TE <TY U,TY ABELIAN_GROUP>U AbstractBIT<U,ABELIAN_GROUP>::InitialSegmentSum(CRI i_final){U sum = m_M.Zero();int j = min(i_final + 1,m_SZ);WH(j > 0){sum = m_M.Sum(MO(sum),m_fenwick[j]);j -= j & -j;}RE sum;}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));}TE <TY U,TY ABELIAN_GROUP> TE <TY F,SFINAE_FOR_BIT_BS>int AbstractBIT<U,ABELIAN_GROUP>::Search(CO F& f){int j = 0;int PW = m_PW;U sum = m_M.Zero();U sum_next = sum;WH(PW > 0){int j_next = j | PW;if(j_next <= m_SZ){sum_next = m_M.Sum(MO(sum_next),m_fenwick[j_next]);if(f(sum_next,j_next - 1)){sum_next = sum;}else{sum = sum_next;j = j_next;}}PW >>= 1;}RE j;}TE <TY U,TY ABELIAN_GROUP> TE <TY F,SFINAE_FOR_BIT_BS> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CRI i_start,CO F& f){CO U u_inv = m_M.Inverse(InitialSegmentSum(i_start - 1));RE max(i_start,Search([&](CO U& sum,CRI i){RE i_start <= i && f(m_M.Sum(u_inv,sum),i);}));}TE <TY U,TY ABELIAN_GROUP> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CO U& u){RE Search([&](CO U& sum,CRI){RE !(sum < u);});}TE <TY U,TY ABELIAN_GROUP> IN int AbstractBIT<U,ABELIAN_GROUP>::Search(CRI i_start,CO U& u){RE max(i_start,Search(m_M.Sum(InitialSegmentSum(i_start - 1),u)));}TE <CL Traits,TY U,TY ABELIAN_GROUP> IN OS& OP<<(OS& os,AbstractBIT<U,ABELIAN_GROUP>& bit){auto&& SZ = bit.SZ();for(int i = 0;i < SZ;i++){(i == 0?os:os << " ")<< bit[i];}RE os;}

// AAA ライブラリは以上に挿入する。

#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )
  #define SIGNAL signal( SIGABRT , &AlertAbort );
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
  #define COUT( ... ) VariadicCout( cout << "出力:" , __VA_ARGS__ ) << endl
  #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) << flush
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define CERRNS( ... ) VariadicCout( cerr , __VA_ARGS__ ) << flush
  #define COUT_A( A , N ) OUTPUT_ARRAY( cout << "出力:"  , A , N ) << endl
  #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
  int exec_mode = 0;
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define SIGNAL 
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
  #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
  #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
  #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
  #define CERR( ... ) 
  #define CERRNS( ... ) 
  #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
  #define CERR_A( A , N ) 
#endif
#ifdef REACTIVE
  #ifdef DEBUG
    #define RSET( A , ... ) A = __VA_ARGS__
  #else
    #define RSET( A , ... ) cin >> A
  #endif
  #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#ifdef USE_GETLINE
  #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
  #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
  #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
  #define SET_LL( A ) cin >> A
  #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
  #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
  #define CIN_A( LL , I , N , ... ) vector<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
  #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) vector<vector<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
#endif
#include <bits/stdc++.h>
using namespace std;
#define REPEAT_MAIN( BOUND ) int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FOR( test_case , 0 , test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase" , test_case , ":" ); } Solve(); CERR( "" ); } CHECK_REDUNDANT_INPUT; }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 )
#define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define RETURN( ... ) COUT( __VA_ARGS__ ); return

// 型のエイリアス
#define decldecay_t( VAR ) decay_t<decltype( VAR )>
template <typename F , typename...Args> using ret_t = decltype( declval<F>()( declval<Args>()... ) );
template <typename T> using inner_t = typename T::type;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
using path = pair<int,ll>;

/* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/
// Random
ll GetRand( const int& Rand_min , const int& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }

// Set
#define DECLARATION_OF_HASH( ... )				\
  struct hash<__VA_ARGS__>					\
  {								\
								\
    inline size_t operator()( const __VA_ARGS__& n ) const;	\
								\
  };								\

#define DEFINITION_OF_POP_FOR_SET( SET )                                \
  template <typename T> inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); const T answer = move( *itr ); S.erase( itr ); return answer; } \
  template <typename T> inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); const T answer = move( *itr ); S.erase( itr ); return answer; } \
  template <typename T> inline SET& operator+=( SET& S , T t ) { S.insert( move( t ) ); return S; } \
  template <typename T> inline SET& operator-=( SET& S , const T& t ) { S.erase( t ); return S; } \
  template <typename T> inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \

#define DEFINITION_OF_UNION_FOR_SET( SET )                              \
  template <typename T> inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \
  template <typename T> inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \

class is_ordered
{

private:
  is_ordered() = delete;
  template <typename T> static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() );
  static constexpr false_type Check( ... );

public:
  template <typename T> static constexpr const bool value = is_same_v< decltype( Check( declval<T>() ) ) , true_type >;

};

template <typename T>
using Set = conditional_t<is_constructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,void>>;

template <typename SET , typename T> inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); }

template <typename SET , typename ITERATOR> inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); }
template <typename SET , typename ITERATOR> inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; }

template <template <typename...> typename SET , typename T , typename...Args> inline bool In( const SET<T,Args...>& S , const T& t ) { return S.count( t ) == 1; }

DEFINITION_OF_POP_FOR_SET( set<T> );
DEFINITION_OF_POP_FOR_SET( unordered_set<T> );
DEFINITION_OF_POP_FOR_SET( multiset<T> );
DEFINITION_OF_POP_FOR_SET( unordered_multiset<T> );

DEFINITION_OF_UNION_FOR_SET( set<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_set<T> );
DEFINITION_OF_UNION_FOR_SET( multiset<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_multiset<T> );
DEFINITION_OF_UNION_FOR_SET( vector<T> );
DEFINITION_OF_UNION_FOR_SET( list<T> );

// Tuple
#define DEFINITION_OF_ARITHMETIC_FOR_TUPLE( OPR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const PAIR<T,U>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); return t0; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const TUPLE<T,U,V>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); return t0; } \
    template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const TUPLE<T,U,V,W>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); get<3>( t0 ) OPR ## = get<3>( t1 ); return t0; } \
  template <typename ARG , typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; return t0; } \
  template <typename ARG , typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; return t0; } \
    template <typename ARG , typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; get<3>( t0 ) OPR ## = t1; return t0; } \
  template <template <typename...> typename TUPLE , typename...ARGS , typename ARG> inline auto operator OPR( const TUPLE<ARGS...>& t0 , const ARG& t1 ) -> decldecay_t( ( get<0>( t0 ) , t0 ) ) { auto t = t0; return move( t OPR ## = t1 ); } \

#define DEFINITION_OF_INCREMENT_FOR_TUPLE( INCR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator INCR( PAIR<T,U>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); return t; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); return t; } \
  template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V,W>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); INCR get<3>( t ); return t; } \

DEFINITION_OF_ARITHMETIC_FOR_TUPLE( + );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( - );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( * );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( / );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( % );

DEFINITION_OF_INCREMENT_FOR_TUPLE( ++ );
DEFINITION_OF_INCREMENT_FOR_TUPLE( -- );

template <class Traits , typename T> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T>& arg ){ return is >> get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator>>( basic_istream<char,Traits>& is , V<T,U>& arg ) -> decltype((get<0>(arg),is))& { return is >> get<0>( arg ) >> get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V,W>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ) >> get<3>( arg ); }

template <class Traits , typename T> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T>& arg ) { return os << get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator<<( basic_ostream<char,Traits>& os , const V<T,U>& arg ) -> decltype((get<0>(arg),os))& { return os << get<0>( arg ) << " " << get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V,W>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ) << " " << get<3>( arg ); }

template <int n>
class TupleAccessIndex
{};

template <typename...Types>
class Tuple :
public tuple<Types...>
{

public:
  inline Tuple( Types&&... args );
  template <typename...Args> inline Tuple( Args&&... args );
  
  template <int n> inline auto& operator[]( const TupleAccessIndex<n>& i ) noexcept;
  template <int n> inline const auto& operator[]( const TupleAccessIndex<n>& i ) const noexcept;

};

// structural binding用
template <typename...Types>
class tuple_size<Tuple<Types...>> :
  public tuple_size<tuple<Types...>>
{};

template <size_t n , typename...Types>
class tuple_element<n,Tuple<Types...>> :
  public tuple_element<n,tuple<Types...>>
{};

template <typename INT> using T2 = Tuple<INT,INT>;
template <typename INT> using T3 = Tuple<INT,INT,INT>;
template <typename INT> using T4 = Tuple<INT,INT,INT,INT>;

constexpr TupleAccessIndex<0> O{};
constexpr TupleAccessIndex<1> I{};
constexpr TupleAccessIndex<2> II{};
constexpr TupleAccessIndex<3> III{};

template <typename...Types> inline Tuple<Types...>::Tuple( Types&&... args ) : tuple<Types...>( move( args )... ) {}
template <typename...Types> template <typename...Args> inline Tuple<Types...>::Tuple( Args&&... args ) : tuple<Types...>( forward<Args>( args )... ) {}

template <typename...Types> template <int n> inline auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) noexcept { return get<n>( *this ); }
template <typename...Types> template <int n> inline const auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) const noexcept { return get<n>( *this ); }

#define DEFINITION_OF_HASH_FOR_TUPLE( PAIR )				\
  template <typename T , typename U> inline size_t hash<PAIR<T,U>>::operator()( const PAIR<T,U>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<T> h0; static const hash<U> h1; return ( h0( get<0>( n ) ) * seed ) ^ h1( get<1>( n ) ); } \

template <typename T> DECLARATION_OF_HASH( tuple<T> );
template <typename T , typename U> DECLARATION_OF_HASH( pair<T,U> );
template <typename T , typename U> DECLARATION_OF_HASH( tuple<T,U> );
template <typename T , typename U , typename V> DECLARATION_OF_HASH( tuple<T,U,V> );
template <typename T , typename U , typename V , typename W> DECLARATION_OF_HASH( tuple<T,U,V,W> );

template <typename T> inline size_t hash<tuple<T>>::operator()( const tuple<T>& n ) const { static const hash<T> h; return h(get<0>( n ) ); }
DEFINITION_OF_HASH_FOR_TUPLE( pair );
DEFINITION_OF_HASH_FOR_TUPLE( tuple );
template <typename T , typename U , typename V> inline size_t hash<tuple<T,U,V>>::operator()( const tuple<T,U,V>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<V> h2; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h2( get<2>( n ) ); }
template <typename T , typename U , typename V , typename W> inline size_t hash<tuple<T,U,V,W>>::operator()( const tuple<T,U,V,W>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<pair<V,W>> h23; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h23( { get<2>( n ) , get<3>( n ) } ); }

// Vector
#define DEFINITION_OF_SCALAR_ACTION_FOR_VECTOR( V , OPR )			\
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a , const T& t ) { for( auto& s : a ){ s OPR ## = t; } return a; } \

#define DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , OPR )			\
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a0 , const V<T>& a1 ) { assert( a0.size() <= a1.size() ); auto itr0 = a0.begin() , end0 = a0.end(); auto itr1 = a1.begin(); while( itr0 != end0 ){ *( itr0++ ) OPR ## = *( itr1++ ); } return a0; } \
  template <typename T , typename U> inline V<T> operator OPR( V<T> a , const U& u ) { return move( a OPR ## = u ); } \

#define DEFINITION_OF_INCREMENT_FOR_VECTOR( V , INCR )			\
  template <typename T> inline V<T>& operator INCR( V<T>& a ) { for( auto& i : a ){ INCR i; } return a; } \

#define DEFINITION_OF_ARITHMETICS_FOR_VECTOR( V )			\
  template <typename T> inline V<T>& operator+=( V<T>& a , const T& t ) { a.push_back( t ); return a; } \
  DEFINITION_OF_SCALAR_ACTION_FOR_VECTOR( V , * );                      \
  DEFINITION_OF_SCALAR_ACTION_FOR_VECTOR( V , / );                      \
  DEFINITION_OF_SCALAR_ACTION_FOR_VECTOR( V , % );                      \
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , + );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , - );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , * );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , / );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , % );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , ++ );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , -- );				\
  template <typename T> inline V<T> operator*( const T& scalar , V<T> v ) { for( auto& t : v ){ t *= scalar; } return move( v ); } \
  template <typename T> inline T pop( V<T>& a ) { assert( !a.empty() ); T answer = move( a.back() ); a.pop_back(); return answer; } \

DEFINITION_OF_ARITHMETICS_FOR_VECTOR( vector );
DEFINITION_OF_ARITHMETICS_FOR_VECTOR( list );

template <typename V> inline auto Get( V& a ) { return [&]( const int& i = 0 ) -> const decldecay_t( a[0] )& { return a[i]; }; }
template <typename T = int> inline vector<T> id( const int& size ) { vector<T> answer( size ); for( int i = 0 ; i < size ; i++ ){ answer[i] = i; } return answer; }

template <typename T> inline void Sort( vector<T>& a , const bool& reversed = false ) { if( reversed ){ static auto comp = []( const T& t0 , const T& t1 ) { return t1 < t0; }; sort( a.begin() , a.end() , comp ); } else { sort( a.begin() , a.end() ); } }
template <typename T0 , typename T1> inline void Sort( vector<T0>& a , vector<T1>& b , const bool& reversed = false ) { const int size = a.size(); assert( size == int( b.size() ) ); vector<pair<T0,T1>> v( size ); for( int i = 0 ; i < size ; i++ ){ v[i] = { move( a[i] ) , move( b[i] ) }; } Sort( v , reversed ); for( int i = 0 ; i < size ; i++ ){ a[i] = move( v[i].first ); b[i] = move( v[i].second ); } }
template <typename T> inline vector<int> IndexSort( const vector<T>& a , const bool& reversed = false ) { auto index = id<int>( a.size() ); if( reversed ){ sort( index.begin() , index.end() , [&]( const int& i , const int& j ) { return a[j] < a[i]; } ); } else { sort( index.begin() , index.end() , [&]( const int& i , const int& j ) { return a[i] < a[j]; } ); } return index; }

template <typename V> inline int len( const V& a ) { return a.size(); }

#define DEFINITION_OF_COUT_FOR_VECTOR( V ) template <class Traits , typename Arg> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const V<Arg>& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; }

DEFINITION_OF_COUT_FOR_VECTOR( vector );
DEFINITION_OF_COUT_FOR_VECTOR( list );
DEFINITION_OF_COUT_FOR_VECTOR( set );
DEFINITION_OF_COUT_FOR_VECTOR( unordered_set );

inline void VariadicResize( const int& size ) {}
template <typename Arg , typename... ARGS> inline void VariadicResize( const int& size , Arg& arg , ARGS&... args ) { arg.resize( size ); VariadicResize( size , args... ); }

// Map
#define DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , OPR )			\
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a , const pair<T,U>& v ) { a[v.first] OPR ## = v.second; return a; } \
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a0 , const MAP<T,U>& a1 ) { for( auto& [t,u] : a1 ){ a0[t] OPR ## = u; } return a0; } \
  template <typename T , typename U , typename ARG> inline MAP<T,U> operator OPR( MAP<T,U> a , const ARG& arg ) { return move( a OPR ## = arg ); } \

#define DEFINITION_OF_ARITHMETICS_FOR_MAP( MAP ) \
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , + );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , - );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , * );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , / );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , % );	\

template <typename T , typename U>
using Map = conditional_t<is_constructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,void>>;

DEFINITION_OF_ARITHMETICS_FOR_MAP( map );
DEFINITION_OF_ARITHMETICS_FOR_MAP( unordered_map );

// StdStream
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i , Arg& arg , ARGS&... args ) { return VariadicSet( is >> arg[i] , i , args... ); }

template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCout( os << forward<Arg1>( arg1 ) << " " , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCoutNonSep( os << forward<Arg1>( arg1 ) , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename ARRAY> inline basic_ostream<char,Traits>& CoutArray( basic_ostream<char,Traits>& os , const int& i_start , const int& i_ulim , ARRAY&& a ) { for( int i = i_start ; i < i_ulim ; i++ ){ ( i == i_start ? os : ( os << " " ) ) << a[i]; } return os; }

// Sum
template <typename T , template <typename...> typename V , typename OPR> T LeftConnectiveProd( const V<T>& f , OPR opr ) { assert( !f.empty() ); auto itr = f.begin() , end = f.end(); T answer = *( itr++ ); while( itr != end ){ answer = opr( move( answer ) , *( itr++ ) ); } return answer; }
template <typename T , template <typename...> typename V> inline T Sum( const V<T>& f ) { return LeftConnectiveProd( f , []( T t0 , const T& t1 ){ return move( t0 += t1 ); } ); }
template <typename T , template <typename...> typename V> inline T Prod( const V<T>& f ) { return LeftConnectiveProd( f , []( T t0 , const T& t1 ){ return move( t0 *= t1 ); } ); }
template <typename T , template <typename...> typename V> inline T Max( const V<T>& f ) { return *max_element( f.begin() , f.end() ); }
template <typename T , template <typename...> typename V> inline T Min( const V<T>& f ) { return *min_element( f.begin() , f.end() ); }

template <typename T , typename U> inline T SetMax( T& n , const U& m ) { return n < m ? n = m : n; }
template <typename T , typename U> inline T SetMin( T& n , const U& m ) { return n > m ? n = m : n; }

template <typename T , typename UINT>
T Power( T t , UINT exponent , T init )
{

  ( exponent & 1 ) == 1 ? init *= t : init;
  exponent >>= 1;

  while( exponent > 0 ){

    // オーバーフロー対策で先に(必要な時だけ)2乗する。
    t *= t;
    ( exponent & 1 ) == 1 ? init *= t : init;
    exponent >>= 1;
    
  }

  return move( init );

}

template <typename INT> inline INT ArithmeticProgressionSum( const INT& l , INT r , const INT& d ) { assert( l <= r ); const INT c = ( r - l ) / d; return ( c & 1 ) == 0 ? ( c + 1 ) * ( l + d * ( c >> 1 ) ) : ( ( c + 1 ) >> 1 ) * ( ( l << 1 ) + d * c ); }
template <typename INT> inline INT ArithmeticProgressionSum( const INT& r ) { return ArithmeticProgressionSum( INT{} , r ); }

template <typename T , typename UINT> inline T GeometricProgressionSum( T rate , UINT exponent_max , const T& init ) { T rate_minus = rate - 1; return rate_minus == 0 ? init * ++exponent_max : ( Power( move( rate ) , move( ++exponent_max ) ) - 1 ) / move( rate_minus ) * init; }

template <typename T , typename UINT>
T GeometricProgressionLinearCombinationSum( vector<T> rate , vector<UINT> exponent_max , const vector<T>& init )
{

  const int size = init.size();
  assert( int( rate.size() ) == size && int( exponent_max.size() ) == size );
  T answer{};

  for( int i = 0 ; i < size ; i++ ){

    answer += GeometricProgressionSum( move( rate[i] ) , move( exponent_max[i] ) , init[i] );

  }

  return answer;

}
/* AAA 常設ライブラリの非圧縮版は以上に挿入する。*/

// デバッグ用
#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
#endif

// 入力フォーマットチェック用
// 1行中の変数の個数をSEPARATOR区切りで確認
#define GETLINE_COUNT( S , VARIABLE_NUMBER , SEPARATOR ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S  = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S[i] == SEPARATOR ){ count++; } } assert( VARIABLE_NUMBER == 0 ? size == 0 : count + 1 == VARIABLE_NUMBER ); }
// 余計な入力の有無を確認
#if defined( DEBUG ) || defined( REACTIVE )
  #define CHECK_REDUNDANT_INPUT 
#else
  #ifdef USE_GETLINE
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #else
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #endif
#endif
// MIN <= N <= MAXを満たすNをSから構築
#define STOI( S , N , MIN , MAX ) decldecay_t( MAX ) N = 0; decldecay_t( MAX ) BOUND ## N = max( decldecay_t( MAX )( abs( MIN ) ) , abs( MAX ) ); { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND ## N / 10 ? true : N == BOUND ## N / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND ## N % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } ASSERT( N , MIN , MAX ); }
#define STOI_A( S , I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); FOR( VARIABLE_FOR_STOI_A , 0 , N ){ STOI( S , A ##_VARIABLE_FOR_STOI_A , MIN , MAX ); A[VARIABLE_FOR_STOI_A + I] = A ##_VARIABLE_FOR_STOI_A; }
// Sをstring SEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_MAIN
0