結果
| 問題 |
No.1781 LCM
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-02-24 23:20:49 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,601 bytes |
| コンパイル時間 | 15,065 ms |
| コンパイル使用メモリ | 382,504 KB |
| 実行使用メモリ | 10,112 KB |
| 最終ジャッジ日時 | 2025-02-24 23:22:57 |
| 合計ジャッジ時間 | 26,602 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 10 WA * 14 RE * 7 |
ソースコード
fn main() {
input!(n: usize, m: usize);
let mut pow = vec![M::zero(); 41];
for i in 2..pow.len() {
pow[i] = M::from(i).pow(n as u64);
}
let (s, l) = prime_count(m);
let small = s
.iter()
.map(|s| M::from(*s) * pow[2])
.collect::<Vec<_>>();
let large = l
.iter()
.map(|s| M::from(*s) * pow[2])
.collect::<Vec<_>>();
let mut prime = vec![];
let sq = small.len() - 1;
enumerate_prime(sq, |p| prime.push(p));
let ans = recurse(|rec, (v, val, mut po): (usize, M, usize)| -> M {
let mut ans = val;
while po < prime.len() && (v * prime[po]).saturating_mul(prime[po]) <= m {
let mut v = v * prime[po];
let mut c = 1;
while v <= m {
ans += rec((v, val * pow[c + 1], po + 1));
v *= prime[po];
c += 1;
}
po += 1;
}
let (pi, sp) = if v <= sq {
(l[v], large[v])
} else {
(s[n / v], small[n / v])
};
if po < pi {
ans += val * sp;
if po > 0 {
ans -= val * small[prime[po - 1]];
}
}
ans
})((1, M::one(), 0));
println!("{}", ans);
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin prime count ----------
// pi(i): i以下の素数の数
// small[i]: pi(i)
// large[i]: pi(floor(n / i))
// として、 (small, large) を返す
// O(N^(3/4))
pub fn prime_count(n: usize) -> (Vec<usize>, Vec<usize>) {
let sqrt = (1..).find(|p| p * p > n).unwrap() - 1;
let mut large = vec![0; sqrt + 1];
let mut small = vec![0; sqrt + 1];
for (i, (large, small)) in large.iter_mut().zip(&mut small).enumerate().skip(1) {
*large = n / i - 1;
*small = i - 1;
}
fn mydiv(a: usize, b: u32) -> u32 {
(a as f64 / b as f64) as u32
}
for p in 2..=sqrt {
if small[p] == small[p - 1] {
continue;
}
let pi = small[p] - 1;
let q = p * p;
let d = sqrt / p;
for i in 1..=d {
large[i] -= large[i * p] - pi;
}
let m = n / p;
let r = sqrt.min(n / q);
for i in (d + 1)..=r {
large[i] -= small[mydiv(m, i as u32) as usize] - pi;
}
for i in (p..=d).rev() {
let sub = small[i] - pi;
small[(i * p)..].iter_mut().take(p).for_each(|p| *p -= sub);
}
}
(small, large)
}
// ---------- end prime count ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub struct ConstantModulo<const M: u32>;
impl<const M: u32> Modulo for ConstantModulo<{ M }> {
fn modulo() -> u32 {
M
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
Self::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= T::modulo() {
v -= T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
Self::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.is_zero() {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
if v >= T::modulo() {
v -= T::modulo();
}
ModInt::new_unchecked(v)
}
}
impl<T> ModInt<T> {
pub fn new_unchecked(n: u32) -> Self {
ModInt(n, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow(T::modulo() as u64 - 2)
}
pub fn fact(n: usize) -> Self {
(1..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn perm(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
inv: Vec<ModInt<T>>,
}
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..=n {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc { fact, ifact, inv }
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
type M = ModInt<ConstantModulo<998_244_353>>;
// ---------- begin enumerate prime ----------
pub fn enumerate_prime<F>(n: usize, mut f: F)
where
F: FnMut(usize),
{
assert!(1 <= n && n <= 5 * 10usize.pow(8));
let batch = (n as f64).sqrt().ceil() as usize;
let mut is_prime = vec![true; batch + 1];
for i in (2..).take_while(|p| p * p <= batch) {
if is_prime[i] {
let mut j = i * i;
while let Some(p) = is_prime.get_mut(j) {
*p = false;
j += i;
}
}
}
let mut prime = vec![];
for (i, p) in is_prime.iter().enumerate().skip(2) {
if *p && i <= n {
f(i);
prime.push(i);
}
}
let mut l = batch + 1;
while l <= n {
let r = std::cmp::min(l + batch, n + 1);
is_prime.clear();
is_prime.resize(r - l, true);
for &p in prime.iter() {
let mut j = (l + p - 1) / p * p - l;
while let Some(is_prime) = is_prime.get_mut(j) {
*is_prime = false;
j += p;
}
}
for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
f(i + l);
}
l += batch;
}
}
// ---------- end enumerate prime ----------
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
F: Fn(&dyn Fn(A) -> R, A) -> R,
{
fn call<A, R, F>(f: &F, a: A) -> R
where
F: Fn(&dyn Fn(A) -> R, A) -> R,
{
f(&|a| call(f, a), a)
}
move |a| call(&f, a)
}
// ---------- end recurse ----------
akakimidori