結果

問題 No.1781 LCM
ユーザー akakimidori
提出日時 2025-02-24 23:26:06
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 2,088 ms / 5,000 ms
コード長 11,601 bytes
コンパイル時間 14,312 ms
コンパイル使用メモリ 387,344 KB
実行使用メモリ 10,152 KB
最終ジャッジ日時 2025-02-24 23:27:44
合計ジャッジ時間 28,374 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
    input!(n: usize, m: usize);
    let mut pow = vec![M::zero(); 41];
    for i in 2..pow.len() {
        pow[i] = M::from(i).pow(n as u64);
    }
    let (s, l) = prime_count(m);
    let small = s
        .iter()
        .map(|s| M::from(*s) * pow[2])
        .collect::<Vec<_>>();
    let large = l
        .iter()
        .map(|s| M::from(*s) * pow[2])
        .collect::<Vec<_>>();
    let mut prime = vec![];
    let sq = small.len() - 1;
    enumerate_prime(sq, |p| prime.push(p));
    let ans = recurse(|rec, (v, val, mut po): (usize, M, usize)| -> M {
        let mut ans = val;
        while po < prime.len() && (v * prime[po]).saturating_mul(prime[po]) <= m {
            let mut v = v * prime[po];
            let mut c = 1;
            while v <= m {
                ans += rec((v, val * pow[c + 1], po + 1));
                v *= prime[po];
                c += 1;
            }
            po += 1;
        }
        let (pi, sp) = if v <= sq {
            (l[v], large[v])
        } else {
            (s[m / v], small[m / v])
        };
        if po < pi {
            ans += val * sp;
            if po > 0 {
                ans -= val * small[prime[po - 1]];
            }
        }
        ans
    })((1, M::one(), 0));
    println!("{}", ans);
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin prime count ----------
// pi(i): i以下の素数の数
// small[i]: pi(i)
// large[i]: pi(floor(n / i))
// として、 (small, large) を返す
// O(N^(3/4))
pub fn prime_count(n: usize) -> (Vec<usize>, Vec<usize>) {
    let sqrt = (1..).find(|p| p * p > n).unwrap() - 1;
    let mut large = vec![0; sqrt + 1];
    let mut small = vec![0; sqrt + 1];
    for (i, (large, small)) in large.iter_mut().zip(&mut small).enumerate().skip(1) {
        *large = n / i - 1;
        *small = i - 1;
    }
    fn mydiv(a: usize, b: u32) -> u32 {
        (a as f64 / b as f64) as u32
    }
    for p in 2..=sqrt {
        if small[p] == small[p - 1] {
            continue;
        }
        let pi = small[p] - 1;
        let q = p * p;
        let d = sqrt / p;
        for i in 1..=d {
            large[i] -= large[i * p] - pi;
        }
        let m = n / p;
        let r = sqrt.min(n / q);
        for i in (d + 1)..=r {
            large[i] -= small[mydiv(m, i as u32) as usize] - pi;
        }
        for i in (p..=d).rev() {
            let sub = small[i] - pi;
            small[(i * p)..].iter_mut().take(p).for_each(|p| *p -= sub);
        }
    }
    (small, large)
}
// ---------- end prime count ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

// ---------- begin enumerate prime ----------
pub fn enumerate_prime<F>(n: usize, mut f: F)
where
    F: FnMut(usize),
{
    assert!(1 <= n && n <= 5 * 10usize.pow(8));
    let batch = (n as f64).sqrt().ceil() as usize;
    let mut is_prime = vec![true; batch + 1];
    for i in (2..).take_while(|p| p * p <= batch) {
        if is_prime[i] {
            let mut j = i * i;
            while let Some(p) = is_prime.get_mut(j) {
                *p = false;
                j += i;
            }
        }
    }
    let mut prime = vec![];
    for (i, p) in is_prime.iter().enumerate().skip(2) {
        if *p && i <= n {
            f(i);
            prime.push(i);
        }
    }
    let mut l = batch + 1;
    while l <= n {
        let r = std::cmp::min(l + batch, n + 1);
        is_prime.clear();
        is_prime.resize(r - l, true);
        for &p in prime.iter() {
            let mut j = (l + p - 1) / p * p - l;
            while let Some(is_prime) = is_prime.get_mut(j) {
                *is_prime = false;
                j += p;
            }
        }
        for (i, _) in is_prime.iter().enumerate().filter(|p| *p.1) {
            f(i + l);
        }
        l += batch;
    }
}
// ---------- end enumerate prime ----------
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
    F: Fn(&dyn Fn(A) -> R, A) -> R,
{
    fn call<A, R, F>(f: &F, a: A) -> R
    where
        F: Fn(&dyn Fn(A) -> R, A) -> R,
    {
        f(&|a| call(f, a), a)
    }
    move |a| call(&f, a)
}
// ---------- end recurse ----------
0