結果

問題 No.5021 Addition Pyramid
ユーザー Jiro_tech15
提出日時 2025-02-25 21:11:44
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,853 ms / 2,000 ms
コード長 25,665 bytes
コンパイル時間 10,661 ms
コンパイル使用メモリ 205,616 KB
実行使用メモリ 6,820 KB
スコア 77,119,999
最終ジャッジ日時 2025-02-25 21:13:34
合計ジャッジ時間 107,635 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 50
権限があれば一括ダウンロードができます

ソースコード

diff #


namespace atcoder {}

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl;
#else
#define NDEBUG
#define dbg(x) true;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif

#ifdef GTEST
#include <gtest/gtest.h>
#endif

#include <math.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#ifdef PERF
#include <gperftools/profiler.h>
#endif

using namespace std;
using namespace atcoder;
#define fast_io                     \
  ios_base::sync_with_stdio(false); \
  cin.tie(0);                       \
  cout.tie(0);
#define ll long long int
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define reps(i, n) for (int i = 1; i <= (int)(n); i++)
#define REP(i, n) for (int i = n - 1; i >= 0; i--)
#define REPS(i, n) for (int i = n; i > 0; i--)
// #define MOD (long long int)(1e9 + 7)
#define INF (int)(1e9)
#define LINF (long long int)(1e18)
#define all(v) v.begin(), v.end()
typedef pair<int, int> Pii;
typedef pair<ll, ll> Pll;
const double PI = acos(-1);

#ifdef NDEBUG
#define CHECK(v1, op, v2)
#else
#define CHECK(v1, op, v2)                            \
  if (!((v1)op(v2))) {                               \
    cerr << "ERROR:" << (v1) << " " << (v2) << endl; \
    assert((v1)op(v2));                              \
  }
#endif

long double nCr(const int n, const int r) {
  long double ret = 1;
  rep(t, r) {
    ret *= (n - t);
    ret /= (r - t);
  }
  return ret;
}

template <typename T>
string to_string(const vector<T>& vec) {
  string ret = "";
  rep(i, vec.size()) {
    ret += vec[i].to_string();
    if (i + 1 != vec.size()) {
      ret += ",";
    }
  }
  return ret;
}

template <typename T>
ostream& operator<<(ostream& os, const vector<T>& vec) {
  os << to_string(vec);
  return os;
}

uint32_t xorshift() {
  static uint32_t x = 12345789;
  static uint32_t y = 362436069;
  static uint32_t z = 521288629;
  static uint32_t w = 38675123;
  uint32_t t;
  t = x ^ (x << 11);
  x = y;
  y = z;
  z = w;
  w ^= t ^ (t >> 8) ^ (w >> 19);

  return w;
}

int rand(const int l, const int r) {
  return xorshift() % (r - l) + l;
}

int rand_other_than(const int l, const int r,
                         const int other) {
  const int num = rand(l, r - 1);
  return num + (num >= other);
}

template <typename T>
const T& rand_vec(const vector<T>& vec) {
  assert(vec.size() > 0);
  return vec[rand(0, vec.size())];
}

template <typename T>
void shuffle(vector<T>& vec) {
  rep(l, (int)vec.size() - 1) {
    const int idx = rand(l, vec.size());
    swap(vec[idx], vec[l]);
  }
}

template <class T, class U = T>
bool chmin(T& x, U&& y) {
  return y < x && (x = std::forward<U>(y), true);
}

template <class T, class U = T>
bool chmax(T& x, U&& y) {
  return x < y && (x = std::forward<U>(y), true);
}

template <typename Ret, typename T>
Ret Sum(const vector<T>& vec) {
  return std::accumulate(all(vec), (Ret)0);
}

template <typename Ret, typename T>
Ret Mean(const vector<T>& vec) {
  assert((int)vec.size() > 0);
  return Sum<T, Ret>(vec) / vec.size();
}

template <typename Ret, typename T>
Ret Std(const vector<T>& vec) {
  assert((int)vec.size() > 0);
  const auto mean =  Mean<Ret>(vec);
  const auto sum2 = std::accumulate(
      all(vec), (Ret)0,
      [](const Ret acc, const T val) { return acc + (Ret)val * val; });
  return (Ret)sum2 / vec.size() - mean * mean;
}

template<typename T, typename U>
T Ceil(const T a, const U b){
  assert(a >= 0);
  assert(b > 0);
  return (a + b - 1) / b;
}

template<typename T, typename U>
T Mod(const T a, const U b){
  return (a + b) % b;
}

class Timer {
  chrono::system_clock::time_point _start, _end;
  ll _sum = 0, _count = 0;

 public:
  void start() { _start = chrono::system_clock::now(); }

  void stop() { _end = chrono::system_clock::now(); }

  void add() {
    const chrono::system_clock::time_point now = chrono::system_clock::now();
    _sum += static_cast<double>(
        chrono::duration_cast<chrono::nanoseconds>(now - _start).count());
    _count++;
  }

  ll sum() const { return _sum / 1000; }

  int count() const { return _count; }

  string average() const {
    if (_count == 0) {
      return "NaN";
    }
    return to_string(_sum / 1000 / _count);
  }

  void reset() {
    _start = chrono::system_clock::now();
    _sum = 0;
    _count = 0;
  }

  inline int ms() const {
    const chrono::system_clock::time_point now = chrono::system_clock::now();
    return static_cast<double>(
        chrono::duration_cast<chrono::microseconds>(now - _start).count() /
        1000);
  }

  inline int ns() const {
    const chrono::system_clock::time_point now = chrono::system_clock::now();
    return static_cast<double>(
        chrono::duration_cast<chrono::microseconds>(now - _start).count());
  }
};

#ifdef LOCAL
struct Timers : unordered_map<string, Timer> {
  friend ostream& operator<<(ostream& os, const Timers& timers) {
    for (const auto& pa : timers) {
      os << pa.first << " time: " << pa.second.sum() / 1000
         << " count: " << pa.second.count() << endl;
    }
    return os;
  }
};
#else
struct Timers {
  struct Dummy {
    void start() const {}
    void add() const {}
  };
  Dummy dummy;
  const Dummy& operator[](const std::string& str) { return dummy; }
  friend ostream& operator<<(ostream& os, const Timers& timers) { return os; }
};
#endif

Timers global_timers;




#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP

#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_MODINT_HPP


using mint = modint;
/* start */

Timer global_timer;
int N;
vector<vector<mint>> A;
const int kHalfMod = (int)5e7;

int Diff(const mint a, const mint b){
  return min((int)(a - b).val(), (int)(b - a).val());
}

struct Output {
  static void StaticInit(istream &is) {
    global_timer.start();
    mint::set_mod((int)1e8);
    cin >> N;
    rep(i, N) {
      A.push_back(vector<mint>());
      rep(j, i+1) {
        int a;
        cin >> a;
        A[i].push_back(a);
      }
    }
  }
  friend ostream &operator<<(ostream &os, const Output &output) { return os; }
};



/* start */

vector<double> PARAMS = {1.0, 0.1};





/* start */

struct Solution {
  vector<vector<mint>> B;
  Solution(mint b) : B(N) {
    B[0].push_back(b);
    rep(i, N) {
      if (i == 0)
        continue;
      rep(j, i + 1) { B[i].push_back(0); }
    }
  }

  auto &Get(int i) { return B[i]; }

  int MaxDiff(int i) {
    int maxDiff = 0;
    rep(j, i + 1) { maxDiff = max(maxDiff, Diff(A[i][j], B[i][j])); }
    return maxDiff;
  }

  void ResetRow(const int i, const mint firstValue) {
    B[i][0] = firstValue;
    rep(j, i) { B[i][j + 1] = B[i - 1][j] - B[i][j]; }
  }

  friend ostream &operator<<(ostream &os, const Solution &sol) {
    rep(j, N){
      os << sol.B[N-1][j].val();
      if(j != N-1) os << " ";
    }
    return os;
  }
};

class Solver {
public:
  Solver() {}
  int Row(Solution &sol, const int i, const int oldMaxDiff) {
    // iの最初の要素を山登り
    sol.ResetRow(i, A[i][0] + rand(-oldMaxDiff, oldMaxDiff + 1));
    int minMaxDiff = sol.MaxDiff(i);
    if (minMaxDiff <= oldMaxDiff) {
      return oldMaxDiff;
    }

    for (int delta = (int)1e6; delta > 0; delta /= 2) {
      const int oldFirstValue = sol.Get(i)[0].val();
      bool updated = false;
      for (const int newFirstValue :
           {oldFirstValue + delta, oldFirstValue - delta}) {
        sol.ResetRow(i, newFirstValue);
        const int newMaxDiff = sol.MaxDiff(i);
        if (newMaxDiff < minMaxDiff) {
          // cerr << kHalfMod - newMaxDiff << " " << kHalfMod - minMaxDiff << endl;
          minMaxDiff = newMaxDiff;
          updated = true;
          break;
        }
      }

      if (!updated) {
        sol.ResetRow(i, oldFirstValue);
      }

      if (minMaxDiff < oldMaxDiff) {
        return oldMaxDiff;
      }
    }

    return minMaxDiff;
  }
  pair<Solution, int> Step(const mint top) {
    // 先頭
    Solution sol(top);

    // 2行目は一旦最適に
    {
      const auto &secondA = A[1];
      auto &secondB = sol.Get(1);
      // 最適
      secondB[0] = secondA[0];
      // しわ寄せ
      secondB[1] = top - secondB[0];
      // 距離を等分
      if (secondA[1].val() < secondB[1].val()) {
        const int diff = secondB[1].val() - secondA[1].val();
        const int halfDiff = diff / 2;
        if (secondA[1].val() + kHalfMod < secondB[1].val()) {
          // B1を増やす
          secondB[0] = secondB[0] - halfDiff;
          secondB[1] = secondB[1] + halfDiff;
        } else {
          // B1を減らす
          secondB[0] = secondB[0] + halfDiff;
          secondB[1] = secondB[1] - halfDiff;
        }
      } else {
        const int diff = secondA[1].val() - secondB[1].val();
        const int halfDiff = diff / 2;
        if (secondB[1].val() + kHalfMod < secondA[1].val()) {
          // B1を減らす
          secondB[0] = secondB[0] + halfDiff;
          secondB[1] = secondB[1] - halfDiff;
        } else {
          // B1を増やす
          secondB[0] = secondB[0] - halfDiff;
          secondB[1] = secondB[1] + halfDiff;
        }
      }
    }

    int oldMaxDiff = max(sol.MaxDiff(0), sol.MaxDiff(1));

    for (int i = 2; i < N; i++) {
      const int newMaxDiff = Row(sol, i, oldMaxDiff);
      oldMaxDiff = newMaxDiff;
    }

    return {sol, oldMaxDiff};
  }
  void Solve() {
    Solution bestSol(0);
    int maxScore = -INF;
    constexpr int kTimeLImit = 1850;
    while (global_timer.ms() < kTimeLImit) {
      const auto [sol, maxDiff] = Step(A[0][0]);
      const int score = kHalfMod - maxDiff;
      if (score > maxScore) {
        maxScore = score;
        bestSol = sol;
      }
    }
    cerr << "score " << maxScore << endl;
    cout << bestSol << endl;
    return;
  }

private:
};

int main(int argc, char* argv[]) {
  fast_io;

  if (argc >= 2) {
    int idx = 0;
    for (int i = 1; i < argc; ++i) {
      PARAMS[idx++] = std::stod(argv[i]);
    }
  }

  Timer timer;
  timer.start();
  Output::StaticInit(cin);
  Solver solver;
  solver.Solve();
  return 0;
}
0