結果
問題 |
No.5021 Addition Pyramid
|
ユーザー |
![]() |
提出日時 | 2025-02-25 21:50:12 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,853 ms / 2,000 ms |
コード長 | 26,552 bytes |
コンパイル時間 | 10,468 ms |
コンパイル使用メモリ | 207,068 KB |
実行使用メモリ | 6,824 KB |
スコア | 223,783,818 |
最終ジャッジ日時 | 2025-02-25 21:51:59 |
合計ジャッジ時間 | 107,394 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
純コード判定しない問題か言語 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 50 |
ソースコード
namespace atcoder {} #ifdef LOCAL #define dbg(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl; #else #define NDEBUG #define dbg(x) true; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #ifdef GTEST #include <gtest/gtest.h> #endif #include <math.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cstdlib> #include <cstring> #include <functional> #include <iomanip> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <vector> #ifdef PERF #include <gperftools/profiler.h> #endif using namespace std; using namespace atcoder; #define fast_io \ ios_base::sync_with_stdio(false); \ cin.tie(0); \ cout.tie(0); #define ll long long int #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define reps(i, n) for (int i = 1; i <= (int)(n); i++) #define REP(i, n) for (int i = n - 1; i >= 0; i--) #define REPS(i, n) for (int i = n; i > 0; i--) // #define MOD (long long int)(1e9 + 7) #define INF (int)(1e9) #define LINF (long long int)(1e18) #define all(v) v.begin(), v.end() typedef pair<int, int> Pii; typedef pair<ll, ll> Pll; const double PI = acos(-1); #ifdef NDEBUG #define CHECK(v1, op, v2) #else #define CHECK(v1, op, v2) \ if (!((v1)op(v2))) { \ cerr << "ERROR:" << (v1) << " " << (v2) << endl; \ assert((v1)op(v2)); \ } #endif long double nCr(const int n, const int r) { long double ret = 1; rep(t, r) { ret *= (n - t); ret /= (r - t); } return ret; } template <typename T> string to_string(const vector<T>& vec) { string ret = ""; rep(i, vec.size()) { ret += vec[i].to_string(); if (i + 1 != vec.size()) { ret += ","; } } return ret; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& vec) { os << to_string(vec); return os; } uint32_t xorshift() { static uint32_t x = 12345789; static uint32_t y = 362436069; static uint32_t z = 521288629; static uint32_t w = 38675123; uint32_t t; t = x ^ (x << 11); x = y; y = z; z = w; w ^= t ^ (t >> 8) ^ (w >> 19); return w; } int rand(const int l, const int r) { return xorshift() % (r - l) + l; } int rand_other_than(const int l, const int r, const int other) { const int num = rand(l, r - 1); return num + (num >= other); } template <typename T> const T& rand_vec(const vector<T>& vec) { assert(vec.size() > 0); return vec[rand(0, vec.size())]; } template <typename T> void shuffle(vector<T>& vec) { rep(l, (int)vec.size() - 1) { const int idx = rand(l, vec.size()); swap(vec[idx], vec[l]); } } template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x && (x = std::forward<U>(y), true); } template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y && (x = std::forward<U>(y), true); } template <typename Ret, typename T> Ret Sum(const vector<T>& vec) { return std::accumulate(all(vec), (Ret)0); } template <typename Ret, typename T> Ret Mean(const vector<T>& vec) { assert((int)vec.size() > 0); return Sum<T, Ret>(vec) / vec.size(); } template <typename Ret, typename T> Ret Std(const vector<T>& vec) { assert((int)vec.size() > 0); const auto mean = Mean<Ret>(vec); const auto sum2 = std::accumulate( all(vec), (Ret)0, [](const Ret acc, const T val) { return acc + (Ret)val * val; }); return (Ret)sum2 / vec.size() - mean * mean; } template<typename T, typename U> T Ceil(const T a, const U b){ assert(a >= 0); assert(b > 0); return (a + b - 1) / b; } template<typename T, typename U> T Mod(const T a, const U b){ return (a + b) % b; } class Timer { chrono::system_clock::time_point _start, _end; ll _sum = 0, _count = 0; public: void start() { _start = chrono::system_clock::now(); } void stop() { _end = chrono::system_clock::now(); } void add() { const chrono::system_clock::time_point now = chrono::system_clock::now(); _sum += static_cast<double>( chrono::duration_cast<chrono::nanoseconds>(now - _start).count()); _count++; } ll sum() const { return _sum / 1000; } int count() const { return _count; } string average() const { if (_count == 0) { return "NaN"; } return to_string(_sum / 1000 / _count); } void reset() { _start = chrono::system_clock::now(); _sum = 0; _count = 0; } inline int ms() const { const chrono::system_clock::time_point now = chrono::system_clock::now(); return static_cast<double>( chrono::duration_cast<chrono::microseconds>(now - _start).count() / 1000); } inline int ns() const { const chrono::system_clock::time_point now = chrono::system_clock::now(); return static_cast<double>( chrono::duration_cast<chrono::microseconds>(now - _start).count()); } }; #ifdef LOCAL struct Timers : unordered_map<string, Timer> { friend ostream& operator<<(ostream& os, const Timers& timers) { for (const auto& pa : timers) { os << pa.first << " time: " << pa.second.sum() / 1000 << " count: " << pa.second.count() << endl; } return os; } }; #else struct Timers { struct Dummy { void start() const {} void add() const {} }; Dummy dummy; const Dummy& operator[](const std::string& str) { return dummy; } friend ostream& operator<<(ostream& os, const Timers& timers) { return os; } }; #endif Timers global_timers; #ifndef ATCODER_MODINT_HPP #define ATCODER_MODINT_HPP 1 #ifndef ATCODER_INTERNAL_MATH_HPP #define ATCODER_INTERNAL_MATH_HPP 1 #include <utility> namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_MATH_HPP #ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP #define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1 #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #endif // ATCODER_MODINT_HPP using mint = modint; /* start */ Timer global_timer; int N; vector<vector<mint>> A; const int kHalfMod = (int)5e7; int Diff(const mint a, const mint b){ return min((int)(a - b).val(), (int)(b - a).val()); } struct Output { static void StaticInit(istream &is) { global_timer.start(); mint::set_mod((int)1e8); cin >> N; rep(i, N) { A.push_back(vector<mint>()); rep(j, i+1) { int a; cin >> a; A[i].push_back(a); } } } friend ostream &operator<<(ostream &os, const Output &output) { return os; } }; /* start */ vector<double> PARAMS = {1.0, 0.1}; /* start */ struct Solution { vector<vector<mint>> B; Solution(mint b) : B(N) { B[0].push_back(b); rep(i, N) { if (i == 0) continue; rep(j, i + 1) { B[i].push_back(0); } } } auto &Get(int i) { return B[i]; } int MaxDiff(int i) { int maxDiff = 0; rep(j, i + 1) { maxDiff = max(maxDiff, Diff(A[i][j], B[i][j])); } return maxDiff; } void ResetRow(const int i, const mint firstValue) { B[i][0] = firstValue; rep(j, i) { B[i][j + 1] = B[i - 1][j] - B[i][j]; } } friend ostream &operator<<(ostream &os, const Solution &sol) { rep(j, N) { os << sol.B[N - 1][j].val(); if (j != N - 1) os << " "; } return os; } }; class Solver { public: int globalMinMaxDiff = INF; Solver() {} int Row(Solution &sol, const int i, const int oldMaxDiff) { // iの最初の要素を山登り sol.ResetRow(i, A[i][0] + rand(-oldMaxDiff, oldMaxDiff + 1)); int minMaxDiff = sol.MaxDiff(i); if (minMaxDiff <= oldMaxDiff) { return oldMaxDiff; } for (int delta = (int)4e6; delta > 0; delta /= 4) { const int oldFirstValue = sol.Get(i)[0].val(); bool updated = false; for (const int newFirstValue : {oldFirstValue + delta, oldFirstValue - delta}) { sol.ResetRow(i, newFirstValue); const int newMaxDiff = sol.MaxDiff(i); if (newMaxDiff < minMaxDiff) { // cerr << kHalfMod - newMaxDiff << " " << kHalfMod - minMaxDiff << // endl; minMaxDiff = newMaxDiff; updated = true; break; } } if (!updated) { sol.ResetRow(i, oldFirstValue); } if (minMaxDiff < oldMaxDiff) { return oldMaxDiff; } } return minMaxDiff; } pair<Solution, int> Step(const mint top) { // 先頭 Solution sol(top); // 2行目は一旦最適に { const auto &secondA = A[1]; auto &secondB = sol.Get(1); // 最適 secondB[0] = secondA[0]; // しわ寄せ secondB[1] = top - secondB[0]; // 距離を等分 if (secondA[1].val() < secondB[1].val()) { const int diff = secondB[1].val() - secondA[1].val(); const int halfDiff = diff / 2; if (secondA[1].val() + kHalfMod < secondB[1].val()) { // B1を増やす secondB[0] = secondB[0] - halfDiff; secondB[1] = secondB[1] + halfDiff; } else { // B1を減らす secondB[0] = secondB[0] + halfDiff; secondB[1] = secondB[1] - halfDiff; } } else { const int diff = secondA[1].val() - secondB[1].val(); const int halfDiff = diff / 2; if (secondB[1].val() + kHalfMod < secondA[1].val()) { // B1を減らす secondB[0] = secondB[0] + halfDiff; secondB[1] = secondB[1] - halfDiff; } else { // B1を増やす secondB[0] = secondB[0] - halfDiff; secondB[1] = secondB[1] + halfDiff; } } } int oldMaxDiff = max(sol.MaxDiff(0), sol.MaxDiff(1)); for (int i = 2; i < N; i++) { Solution bestSol = sol; int minMaxDiff = INF; rep(t, 100) { const int newMaxDiff = Row(sol, i, oldMaxDiff); if (newMaxDiff < minMaxDiff) { minMaxDiff = newMaxDiff; bestSol = sol; if (newMaxDiff <= oldMaxDiff) { break; } } } // 探索打ち切り if (globalMinMaxDiff < minMaxDiff) { return {bestSol, INF}; } assert(minMaxDiff >= bestSol.MaxDiff(i)); chmax(oldMaxDiff, minMaxDiff); sol = bestSol; } return {sol, oldMaxDiff}; } void Solve() { Solution bestSol(0); globalMinMaxDiff = kHalfMod; constexpr int kTimeLImit = 1850; while (global_timer.ms() < kTimeLImit) { const auto [sol, maxDiff] = Step( A[0][0] + rand(-globalMinMaxDiff / 10, globalMinMaxDiff / 10 + 1)); if (maxDiff < globalMinMaxDiff) { globalMinMaxDiff = maxDiff; bestSol = sol; } } int debug = 0; rep(i, N) { rep(j, i + 1) { chmax(debug, Diff(A[i][j], bestSol.Get(i)[j])); if (i + 1 < N) { assert(bestSol.Get(i)[j] == bestSol.Get(i + 1)[j] + bestSol.Get(i + 1)[j + 1]); } } } cerr << kHalfMod - debug << endl; cerr << "score " << kHalfMod - globalMinMaxDiff << endl; cout << bestSol << endl; return; } private: }; int main(int argc, char* argv[]) { fast_io; if (argc >= 2) { int idx = 0; for (int i = 1; i < argc; ++i) { PARAMS[idx++] = std::stod(argv[i]); } } Timer timer; timer.start(); Output::StaticInit(cin); Solver solver; solver.Solve(); return 0; }