結果
| 問題 |
No.3040 Aoiスコア
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-02-28 21:36:55 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 7 ms / 1,000 ms |
| コード長 | 13,044 bytes |
| コンパイル時間 | 2,965 ms |
| コンパイル使用メモリ | 292,972 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-06-20 20:55:27 |
| 合計ジャッジ時間 | 3,805 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
// #include <bits/allocator.h> // Temp fix for gcc13 global pragma
// #pragma GCC target("avx2,bmi2,popcnt,lzcnt")
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
#ifdef LOCAL
#include "Debug.h"
#else
#define debug_endl() 42
#define debug(...) 42
#define debug2(...) 42
#define debugbin(...) 42
#endif
template<class data_t, data_t _mod>
struct modular_fixed_base{
#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)
#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)
static_assert(IS_UNSIGNED(data_t));
static_assert(1 <= _mod && _mod < data_t(1) << 8 * sizeof(data_t) - 1);
static constexpr bool VARIATE_MOD_FLAG = false;
static constexpr data_t mod(){
return _mod;
}
template<class T>
static vector<modular_fixed_base> precalc_power(T base, int SZ){
vector<modular_fixed_base> res(SZ + 1, 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
return res;
}
template<class T>
static vector<modular_fixed_base> precalc_geometric_sum(T base, int SZ){
vector<modular_fixed_base> res(SZ + 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base + base;
return res;
}
static vector<modular_fixed_base> _INV;
static void precalc_inverse(int SZ){
if(_INV.empty()) _INV.assign(2, 1);
for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
}
// _mod must be a prime
static modular_fixed_base _primitive_root;
static modular_fixed_base primitive_root(){
if(_primitive_root) return _primitive_root;
if(_mod == 2) return _primitive_root = 1;
if(_mod == 998244353) return _primitive_root = 3;
data_t divs[20] = {};
divs[0] = 2;
int cnt = 1;
data_t x = (_mod - 1) / 2;
while(x % 2 == 0) x /= 2;
for(auto i = 3; 1LL * i * i <= x; i += 2){
if(x % i == 0){
divs[cnt ++] = i;
while(x % i == 0) x /= i;
}
}
if(x > 1) divs[cnt ++] = x;
for(auto g = 2; ; ++ g){
bool ok = true;
for(auto i = 0; i < cnt; ++ i){
if(modular_fixed_base(g).power((_mod - 1) / divs[i]) == 1){
ok = false;
break;
}
}
if(ok) return _primitive_root = g;
}
}
constexpr modular_fixed_base(){ }
modular_fixed_base(const double &x){ data = _normalize(llround(x)); }
modular_fixed_base(const long double &x){ data = _normalize(llround(x)); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){
int sign = x >= 0 ? 1 : -1;
data_t v = _mod <= sign * x ? sign * x % _mod : sign * x;
if(sign == -1 && v) v = _mod - v;
return v;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }
modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); }
modular_fixed_base &operator++(){ return *this += 1; }
modular_fixed_base &operator--(){ return *this += _mod - 1; }
modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }
modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }
modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }
modular_fixed_base &operator*=(const modular_fixed_base &rhs){
if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod;
else if constexpr(is_same_v<data_t, unsigned long long>){
long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);
data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);
}
else data = _normalize(data * rhs.data);
return *this;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base &inplace_power(T e){
if(e == 0) return *this = 1;
if(data == 0) return *this = {};
if(data == 1 || e == 1) return *this;
if(data == mod() - 1) return e % 2 ? *this : *this = -*this;
if(e < 0) *this = 1 / *this, e = -e;
if(e == 1) return *this;
modular_fixed_base res = 1;
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base power(T e) const{
return modular_fixed_base(*this).inplace_power(e);
}
// c + c * x + ... + c * x^{e-1}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base &inplace_geometric_sum(T e, modular_fixed_base c = 1){
if(e == 0) return *this = {};
if(data == 0) return *this = {};
if(data == 1) return *this = c * e;
if(e == 1) return *this = c;
if(data == mod() - 1) return *this = c * abs(e % 2);
modular_fixed_base res = 0;
if(e < 0) return *this = geometric_sum(-e + 1, -*this) - 1;
if(e == 1) return *this = c * *this;
for(; e; c *= 1 + *this, *this *= *this, e >>= 1) if(e & 1) res += c, c *= *this;
return *this = res;
}
// c + c * x + ... + c * x^{e-1}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base geometric_sum(T e, modular_fixed_base c = 1) const{
return modular_fixed_base(*this).inplace_geometric_sum(e, c);
}
modular_fixed_base &operator/=(const modular_fixed_base &otr){
make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;
if(a < _INV.size()) return *this *= _INV[a];
while(a){
make_signed_t<data_t> t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return *this *= u;
}
#define ARITHMETIC_OP(op, apply_op)\
modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; }
ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)
#undef ARITHMETIC_OP
#define COMPARE_OP(op)\
bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; }
COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)
#undef COMPARE_OP
friend istream &operator>>(istream &in, modular_fixed_base &number){
long long x;
in >> x;
number.data = modular_fixed_base::_normalize(x);
return in;
}
friend ostream &operator<<(ostream &out, const modular_fixed_base &number){
out << number.data;
#ifdef LOCAL
cerr << "(";
for(auto d = 1; ; ++ d){
if((number * d).data <= 1000000){
cerr << (number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
else if((-number * d).data <= 1000000){
cerr << "-" << (-number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
}
cerr << ")";
#endif
return out;
}
data_t data = 0;
#undef IS_INTEGRAL
#undef IS_UNSIGNED
};
template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV;
template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root;
const unsigned int mod = (119 << 23) + 1; // 998244353
// const unsigned int mod = 1e9 + 7; // 1000000007
// const unsigned int mod = 1e9 + 9; // 1000000009
// const unsigned long long mod = (unsigned long long)1e18 + 9;
using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>;
modular operator""_m(const char *x){ return stoll(x); }
template<class T>
struct graph{
using Weight_t = T;
struct Edge_t{
int from, to;
T cost;
Edge_t &inplace_flip(){
swap(from, to);
return *this;
}
Edge_t flip() const{
return (*this).inplace_flip();
}
};
int n;
vector<Edge_t> edge;
vector<vector<int>> adj;
function<bool(int)> ignore;
graph(int n = 1): n(n), adj(n){
assert(n >= 1);
}
graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
assert(n >= 1);
if(undirected){
for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
}
else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
}
graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
assert(n >= 1);
if(undirected){
for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
}
else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
}
graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
assert(n >= 1);
for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
}
graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
assert(n >= 1);
for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
}
int add_vertex(){
adj.emplace_back();
return n ++;
}
int operator()(int u, int id) const{
#ifdef LOCAL
assert(0 <= id && id < (int)edge.size());
assert(edge[id].from == u || edge[id].to == u);
#endif
return u ^ edge[id].from ^ edge[id].to;
}
int link(int u, int v, T w = {}){ // insert an undirected edge
int id = (int)edge.size();
adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
return id;
}
int orient(int u, int v, T w = {}){ // insert a directed edge
int id = (int)edge.size();
adj[u].push_back(id), edge.push_back({u, v, w});
return id;
}
vector<int> neighbor(int u, int exclude = -1) const{
vector<int> res;
for(auto id: adj[u]){
if(id == exclude || ignore && ignore(id)) continue;
res.push_back(operator()(u, id));
}
return res;
}
vector<array<int, 2>> weighted_neighbor(int u, int exclude = -1) const{
vector<array<int, 2>> res;
for(auto id: adj[u]){
if(id == exclude || ignore && ignore(id)) continue;
res.push_back({operator()(u, id), edge[id].cost});
}
return res;
}
void clear(){
for(auto [u, v, w]: edge){
adj[u].clear();
adj[v].clear();
}
edge.clear();
ignore = {};
}
graph transpose() const{ // the transpose of the directed graph
graph res(n);
for(auto id = 0; id < (int)edge.size(); ++ id){
if(ignore && ignore(id)) continue;
res.orient(edge[id].to, edge[id].from, edge[id].cost);
}
return res;
}
int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
return (int)adj[u].size();
}
// The adjacency list is sorted for each vertex.
vector<vector<int>> get_adjacency_list() const{
vector<vector<int>> res(n);
for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
if(ignore && ignore(id)) continue;
res[(*this)(u, id)].push_back(u);
}
return res;
}
void set_ignoration_rule(const function<bool(int)> &f){
ignore = f;
}
void reset_ignoration_rule(){
ignore = nullptr;
}
friend ostream &operator<<(ostream &out, const graph &g){
for(auto id = 0; id < (int)g.edge.size(); ++ id){
if(g.ignore && g.ignore(id)) continue;
auto &e = g.edge[id];
out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
}
return out;
}
};
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
int n, m;
string s;
cin >> n >> m >> s;
const int tot_cnt = ranges::count(s, '?');
graph<int> g(n);
for(auto i = 0; i < m; ++ i){
int u, v;
cin >> u >> v, -- u, -- v;
g.link(u, v, 1);
}
modular res = 0;
for(auto u = 0; u < n; ++ u){
if(s[u] != 'o' && s[u] != '?'){
continue;
}
array<int, 27> cnt{};
for(auto v: g.neighbor(u)){
if(s[v] == '?'){
++ cnt[26];
}
else{
++ cnt[s[v] - 'a'];
}
}
res += cnt['a' - 'a'] * cnt['i' - 'a'] * 26_m .power(tot_cnt - (s[u] == '?'));
res += cnt['a' - 'a'] * cnt[26] * 26_m .power(tot_cnt - (s[u] == '?') - 1);
res += cnt[26] * cnt['i' - 'a'] * 26_m .power(tot_cnt - (s[u] == '?') - 1);
res += cnt[26] * (cnt[26] - 1) * 26_m .power(tot_cnt - (s[u] == '?') - 2);
}
cout << res << "\n";
return 0;
}
/*
*/