結果

問題 No.3044 よくあるカエルさん
ユーザー Katu2ou
提出日時 2025-02-28 22:20:29
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 62 ms / 2,000 ms
コード長 9,263 bytes
コンパイル時間 6,207 ms
コンパイル使用メモリ 332,904 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2025-02-28 22:20:51
合計ジャッジ時間 6,473 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

//#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;

#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__)
#define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__)
#define CLR(a, b) memset((a), (b), sizeof(a))
#define DUMP(x) cout << #x << " = " << (x) << endl;
#define INF (long long)1001001001001001001
#define inf 1001001000
#define MOD 998244353
#define MOD1 1000000007
#define PI 3.14159265358979
#define epsilon 1e-12
#define fcout cout << fixed << setprecision(12)
#define MP make_pair
#define PB push_back
#define fi first
#define se second
#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())

using ll = long long;
using ld = long double;
using vi = vector<int>;
using vl = vector<long long>;
using vs = vector<string>;
using vd = vector<double>;
using vld = vector<long double>;
using vb = vector<bool>;
using vpii = vector<pair<int, int>>;
using vpll = vector<pair<long long, long long>>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
using vvd = vector<vector<double>>;
using vvld = vector<vector<long double>>;
using vvb = vector<vector<bool>>;
using vvpii = vector<vector<pair<int,int>>>;
using vvpll = vector<vector<pair<long long,long long>>>;
using vvvi = vector<vector<vector<int>>>;
using vvvl = vector<vector<vector<long long>>>;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
using LL = __int128_t;
using mint = atcoder::modint998244353;
using vmint = vector<mint>;
using vvmint = vector<vector<mint>>;
using vvvmint = vector<vector<vector<mint>>>;

ll gcd(ll x, ll y) {if (x == 0) return y;	return gcd(y%x, x);} 
ll lcm(ll x, ll y) { __int128_t xx,yy; xx=x; yy=y; __int128_t ans=xx * yy / gcd(x, y); ll ans2=ans; return ans2; }
template<typename T>
T POW(T x, ll n){T ret=1;	while(n>0){		if(n&1) ret=ret*x;		x=x*x;		n>>=1;	}	return ret;}
template<typename T>
T modpow(T a, ll n, T p) {	if(n==0) return (T)1;  if (n == 1) return a % p;  if (n % 2 == 1) return (a * modpow(a, n - 1, p)) % p;  T t = modpow(a, n / 2, p);  return (t * t) % p;}
template<typename T>
T modinv(T a, T m) {	if(m==0)return (T)1;	T b = m, u = 1, v = 0;	while (b) {		T t = a / b;		a -= t * b; swap(a, b);		u -= t * v; swap(u, v);	}	u %= m;	if (u < 0) u += m;	return u;}
ll REM(ll a, ll b){ return (a % b + b) % b;}
ll QUO(ll a, ll b){ return (a - REM(a, b)) / b;}
/*
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dist1(1, 100); [1,100]
int random_value = dist1(gen);
*/
/*
auto start = chrono::steady_clock::now(); //時間計測の開始
auto now = std::chrono::steady_clock::now(); //現在時刻と開始時刻の差を測定
double elapsed = std::chrono::duration<double>(now - start).count(); //時間をdouble型で取得
*/
/*
const int MAXCOMB=510000;
std::vector<mint> FAC(MAXCOMB), FINV(MAXCOMB), INV(MAXCOMB);
void COMinit() {FAC[0] = FAC[1] = 1;FINV[0] = FINV[1] = 1;INV[1] = 1;for (int i = 2; i < MAXCOMB; i++) {FAC[i] = FAC[i - 1] * i;INV[i] = mint(0) - INV[mint::mod() % i] * (mint::mod() / i);FINV[i] = FINV[i - 1] * INV[i];}}
mint COM(int n, int k) {if (n < k) return 0;if (n < 0 || k < 0) return 0;return FAC[n] * FINV[k] * FINV[n - k];}
*/

template <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false));}
template <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false));}
template <class T> T BS(vector<T> &vec, T key) {return lower_bound(vec.begin(), vec.end(), key) - vec.begin();}
template<class T> pair<T,T> RangeBS(vector<T> &vec, T lowv, T highv){auto itr_l = lower_bound(vec.begin(), vec.end(), lowv); auto itr_r = upper_bound(vec.begin(), vec.end(), highv); return make_pair(distance(vec.begin(), itr_l), distance(vec.begin(), itr_r)-1);}
void fail() { cout << "-1\n"; exit(0); } void no() { cout << "No\n"; exit(0); } void yes() { cout << "Yes\n"; exit(0); }
int dx[] = { 1,0,-1,0,1,1,-1,-1 }; int dy[] = { 0,1,0,-1,1,-1,1,-1};
bool range_in(int i, int j, int h, int w){ if(i<0 || j<0 || i>=h || j>=w) return false; return true;} 
int bitcount(int n){n=(n&0x55555555)+(n>>1&0x55555555); n=(n&0x33333333)+(n>>2&0x33333333); n=(n&0x0f0f0f0f)+(n>>4&0x0f0f0f0f); n=(n&0x00ff00ff)+(n>>8&0x00ff00ff); n=(n&0x0000ffff)+(n>>16&0x0000ffff); return n;}

template<typename T>
struct Edge{
    int from, to, index;
    T cost;
    Edge() : from(-1), to(-1), index(-1), cost(0) {}
    Edge(int _to) : from(-1), to(_to), index(-1), cost(0) {}
    Edge(int _to, T _cost) : from(-1), to(_to), index(-1), cost(_cost) {}
    Edge(int _from, int _to, int _index) : from(_from), to(_to), index(_index), cost(0) {}
    Edge(int _from, int _to, int _index, T _cost) 
        : from(_from), to(_to), index(_index), cost(_cost) {}
    bool operator<(const Edge<T>& other) const {
        return cost < other.cost; 
    }
    Edge &operator=(const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
};
using Graph = vector<vector<int>>; 
template <typename T>
using WGraph = vector<vector<Edge<T>>>; 

//////////////////////////////////////////////////////////////////////////////////////////

template <class T>
struct Matrix {
  vector<vector<T>> A;

  Matrix() = default;
  Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
  Matrix(int n) : A(n, vector<T>(n, T())){};

  int H() const { return A.size(); }

  int W() const { return A[0].size(); }

  int size() const { return A.size(); }

  inline const vector<T> &operator[](int k) const { return A[k]; }

  inline vector<T> &operator[](int k) { return A[k]; }

  static Matrix I(int n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    int n = H(), m = W();
    assert(n == B.H() && m == B.W());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    int n = H(), m = B.W(), p = W();
    assert(p == B.H());
    vector<vector<T> > C(n, vector<T>(m, T{}));
    for (int i = 0; i < n; i++)
      for (int k = 0; k < p; k++)
        for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(H());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  bool operator==(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return false;
    return true;
  }

  bool operator!=(const Matrix &B) const {
    assert(H() == B.H() && W() == B.W());
    for (int i = 0; i < H(); i++)
      for (int j = 0; j < W(); j++)
        if (A[i][j] != B[i][j]) return true;
    return false;
  }

  Matrix inverse() const {
    assert(H() == W());
    Matrix B(H());
    B.A = inverse_matrix(A);
    return B;
  }

  friend ostream &operator<<(ostream &os, const Matrix &p) {
    int n = p.H(), m = p.W();
    for (int i = 0; i < n; i++) {
      os << (i ? "   " : "") << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() const {
    Matrix B(*this);
    assert(H() == W());
    T ret = 1;
    for (int i = 0; i < H(); i++) {
      int idx = -1;
      for (int j = i; j < W(); j++) {
        if (B[j][i] != 0) {
          idx = j;
          break;
        }
      }
      if (idx == -1) return 0;
      if (i != idx) {
        ret *= T(-1);
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T inv = T(1) / B[i][i];
      for (int j = 0; j < W(); j++) {
        B[i][j] *= inv;
      }
      for (int j = i + 1; j < H(); j++) {
        T a = B[j][i];
        if (a == 0) continue;
        for (int k = i; k < W(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return ret;
  }
};

void solve(){
    ll n,t;
    cin>>n>>t;
    n--;
    ll k,l;
    cin>>k>>l;
    vmint cnt(3);
    cnt[0]=k-1;
    cnt[2] = 7-l;
    cnt[1]=6-cnt[0]-cnt[2];
    Matrix<mint> A(t);
    A[0][0]=(mint)cnt[0]/6;
    A[0][1]=(mint)cnt[1]/6;
    A[0][t-1]=(mint)cnt[2]/6;
    rep(i,t-1){
        A[i+1][i]=1;
    }
    Matrix<mint> v(t,1);
    v[0][0]=1;
    v = (A^n) * v;
    cout<<v[0][0].val()<<endl;

}

signed main(){
	cin.tie(0);
	ios::sync_with_stdio(0);
	cout<<fixed<<setprecision(20);
	int TT; TT = 1; //cin >> TT;
	while(TT--) solve();
}
0