結果

問題 No.3045 反復重み付き累積和
ユーザー PNJ
提出日時 2025-03-01 02:20:15
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3,054 ms / 5,000 ms
コード長 27,345 bytes
コンパイル時間 4,709 ms
コンパイル使用メモリ 319,300 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2025-03-01 02:20:49
合計ジャッジ時間 32,333 ms
ジャッジサーバーID
(参考情報)
judge6 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;

#define vv(type, name, h, w) vector<vector<type>> name(h, vector<type>(w, type(0)))
#define vvv(type, name, h, w, l) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(l, type(0))))
#define vvvv(type, name, a, b, c, d) vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(d, type(0)))))

#define elif else if

#define FOR1(a) for (ll _ = 0; _ < ll(a); _++)
#define FOR2(i, n) for (ll i = 0; i < ll(n); i++)
#define FOR3(i, l, r) for (ll i = l; i < ll(r); i++)
#define FOR4(i, l, r, c) for (ll i = l; i < ll(r); i += c)
#define FOR1_R(a) for (ll _ = ll(a) - 1; _ >= 0; _--)
#define FOR2_R(i, n) for (ll i = (n) - 1; i >= ll(0); i--)
#define FOR3_R(i, l, r) for (ll i = (r) - 1; i >= ll(l); i--)
#define FOR4_R(i, l, r, c) for (ll i = (r) - 1; i >= ll(l); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_in(a, A) for (auto a: A)
#define FOR_each(a, A) for (auto &&a: A)
#define FOR_subset(t, s) for(ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())

int popcount(int x) { return __builtin_popcount(x); }
int popcount(uint32_t x) { return __builtin_popcount(x); }
int popcount(long long x) { return __builtin_popcountll(x); }
int popcount(uint64_t x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(uint32_t x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(long long x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(uint64_t x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }

// 入力
void rd() {}
void rd(char& c) { cin >> c; }
void rd(string& s) { cin >> s; }
void rd(int& x) { cin >> x; }
void rd(uint32_t& x) { cin >> x; }
void rd(long long& x) { cin >> x; }
void rd(uint64_t& x) { cin >> x; }
template<class T>
void rd(vector<T> & v) {
  for (auto& x:v) rd(x);
}

void read() {}
template <class H, class... T>
void read(H& h, T&... t) {
  rd(h), read(t...);
}

#define CHAR(...) \
  char __VA_ARGS__; \
  read(__VA_ARGS__)

#define STRING(...) \
  string __VA_ARGS__; \
  read(__VA_ARGS__)

#define INT(...) \
  int __VA_ARGS__; \
  read(__VA_ARGS__)

#define U32(...) \
  uint32_t __VA_ARGS__; \
  read(__VA_ARGS__)

#define LL(...) \
  long long __VA_ARGS__; \
  read(__VA_ARGS__)

#define U64(...) \
  uint64_t __VA_ARGS__; \
  read(__VA_ARGS__)

#define VC(t, a, n) \
  vector<t> a(n); \
  read(a)

#define VVC(t, a, h, w) \
  vector<vector<t>> a(h, vector<t>(w)); \
  read(a)

//出力
void wt() {}
void wt(const char c) { cout << c; }
void wt(const string s) { cout << s; }
void wt(int x) { cout << x; }
void wt(uint32_t x) { cout << x; }
void wt(long long x) { cout << x; }
void wt(uint64_t x) { cout << x; }
template<class T>
void wt(const vector<T> v) {
  int n = v.size();
  for (int i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(v[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

template <int mod>
struct modint {
  static constexpr uint32_t umod = uint32_t(mod);
  static_assert(umod < (uint32_t(1) << 31));
  uint32_t val;

  static modint raw(uint32_t v) {
    modint x;
    x.val = v % mod;
    return x;
  }

  constexpr modint() : val(0) {}
  constexpr modint(uint32_t x) : val(x % umod) {}
  constexpr modint(uint64_t x) : val(x % umod) {}
  constexpr modint(unsigned __int128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x) {};
  constexpr modint(long long x) : val((x %= mod) < 0 ? x + mod : x) {};
  constexpr modint(__int128 x) : val((x %= mod) < 0 ? x + mod : x) {};

  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = uint64_t(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : uint32_t(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }

  modint inverse() const {
    int a = val, b = mod, s = 1, t = 0;
    while (1) {
      if (a == 1) return modint(s);
      t -= (b / a) * s;
      b %= a;
      if (b == 1) return modint(t + mod);
      s -= (a / b) * t;
      a %= b;
    }
  }

  modint pow(long long n) const {
    assert(n >= 0);
    modint res(1), a(val);
    while (n > 0) {
      if (n & 1) res *= a;
      a *= a;
      n >>= 1;
    }
    return res;
  }

  static constexpr int get_mod() { return mod; }
  
  static constexpr pair<int,int> ntt_info() {
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 924844033) return {21, 44009197};
    if (mod == 998244353) return {23, 31};
    return {-1, -1};
  }
};

template <int mod>
void rd(modint<mod>& x) {
  uint32_t y;
  cin >> y;
  x = y;
}

template <int mod>
void wt(modint<mod> x) {
  wt(x.val);
}

template <typename mint>
mint fact(long long n) {
  static vector<mint> res = {1, 1};
  static long long le = 1;
  while (le <= n){
    le++;
    res.push_back(res[le - 1] * le);
  }
  return res[n];
}

template <typename mint>
mint fact_inv(long long n) {
  static vector<mint> res = {1, 1};
  static long long le = 1;
  while (le <= n) {
    le++;
    res.push_back(res[le - 1] / le);
  }
  return res[n];
}

template <typename mint>
mint binom(long long n, long long r) {
  if (min(n, r) < 0) return mint(0);
  if (n < r) return 0;
  mint res = fact<mint>(n) * (fact_inv<mint>(n - r) * fact_inv<mint>(r));
  return res;
}

long long randint(long long a, long long b) {
  static random_device rd;
  static mt19937_64 gen(rd());
  uniform_int_distribution<long long> dist(a, b);
  return dist(gen);
}

long long pow(long long a, long long r, long long mod) {
  if (r == 0) return 1;
  long long res = pow(a, r / 2, mod);
  res = (res * res) % mod;
  if (r % 2 == 1) res = (res * a) % mod;
  return res;
}

long long Tonelli_Shanks(long long a, long long mod) {
  a %= mod;
  if (a < 2) return a;
  if (pow(a, (mod - 1) / 2, mod) != 1) return -1;
  if (mod % 4 == 3) return pow(a, (mod + 1) / 4, mod);

  long long b = 3;
  if (mod != 998244353) {
    while (pow(b, (mod - 1) / 2, mod) == 1) {
      b = randint(2, mod - 1);
    }
  }

  long long q = mod - 1;
  long long Q = 0;
  while (q % 2 == 0) {
    Q++, q /= 2;
  }

  long long x = pow(a, (q + 1) / 2, mod);
  b = pow(b, q, mod);

  long long shift = 2;
  while ((x * x) % mod != a) {
    long long error = (((pow(a, mod - 2, mod) * x) % mod) * x) % mod;
    if (pow(error, 1 << (Q - shift), mod) != 1) {
      x = (x * b) % mod;
    }
    b = (b * b) % mod;
    shift++;
  }
  return x;
}

long long mod_inv(long long a, long long mod) {
  if (mod == 1) return 0;
  a %= mod;
  long long b = mod, s = 1, t = 0;
  while (1) {
    if (a == 1) return s;
    t -= (b / a) * s;
    b %= a;
    if (b == 1) return t + mod;
    s -= (a / b) * t;
    a %= b;
  }
}

long long Garner(vector<long long> Rem, vector<long long> Mod, int MOD) {
  assert (Rem.size() == Mod.size());
  long long mod = MOD;
  Rem.push_back(0);
  Mod.push_back(mod);
  long long n = Mod.size();
  vector<long long> coffs(n, 1);
  vector<long long> constants(n, 0);
  for (int i = 0; i < n - 1; i++) {
    long long v = (Mod[i] + Rem[i] - constants[i]) % Mod[i];
    v *= mod_inv(coffs[i], Mod[i]);
    v %= Mod[i];
    for (int j = i + 1; j < n; j++) {
      constants[j] = (constants[j] + coffs[j] * v) % Mod[j];
      coffs[j] = (coffs[j] * Mod[i]) % Mod[j];
    }
  }
  return constants[n - 1];
}

template <class mint>
void ntt(vector<mint> &a, bool inverse) {
  const int mod = mint::get_mod();
  const int rank2 = mint::ntt_info().first;
  static array<mint, 30> root, rate2, rate3, iroot, irate2, irate3;

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().second;
    iroot[rank2] = mint(1) / root[rank2];
    for (int i = rank2 - 1; i >= 0; i--) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }

    mint prod = 1, iprod = 1;
    for (int i = 0; i < rank2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }

    prod = 1, iprod = 1;
    for (int i = 0; i < rank2 - 1; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = a.size(), h = topbit(n);

  if (!inverse) {
    int le = 0;
    while (le < h) {
      if (h - le == 1) {
        int p = 1 << (h - le - 1);
        mint rot = 1;
        for (int s = 0; s < (1 << le); s++) {
          int offset = s << (h - le);
          for (int i = 0; i < p; i++) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        le++;
      }
      else {
        int p = 1 << (h - le - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << le); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - le);
          for (int i = 0; i < p; i++) {
            uint64_t mod2 = uint64_t(mod) * mod;
            uint64_t a0 = a[i + offset].val;
            uint64_t a1 = uint64_t(a[i + offset + p].val) * rot.val;
            uint64_t a2 = uint64_t(a[i + offset + p * 2].val) * rot2.val;
            uint64_t a3 = uint64_t(a[i + offset + p * 3].val) * rot3.val;
            uint64_t a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + p * 2] = a0 + mod2 - a2 + a1na3imag;
            a[i + offset + p * 3] = a0 + mod2 - a2 + (mod2 - a1na3imag);
          }
          rot = rot * rate3[topbit(~s & -~s)];
        }
        le = le + 2;
      }
    }
  }
  else {
    mint coef = mint(n).inverse();
    for (int i = 0; i < n; i++) {
      a[i] *= coef;
    }
    int le = h;
    while (le) {
      if (le == 1) {
        int p = 1 << (h - le);
        mint irot = 1;
        for (int s = 0; s < (1 << (le - 1)); s++) {
          int offset = s << (h - le + 1);
          for (int i = 0; i < p; i++) {
            uint64_t l = a[i + offset].val;
            uint64_t r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
          }
        le--;
      }
      else {
        int p = 1 << (h - le);
        mint irot = 1, iimag = iroot[2];
        for (int s = 0; s < (1 << (le - 2)); s++) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - le + 2);
          for (int i = 0; i < p; i++) {
            uint64_t a0 = a[i + offset].val;
            uint64_t a1 = a[i + offset + p].val;
            uint64_t a2 = a[i + offset + p * 2].val;
            uint64_t a3 = a[i + offset + p * 3].val;
            uint64_t a2na3iimag = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + p] = (a0 + mod - a1 + a2na3iimag) * irot.val;
            a[i + offset + p * 2] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + p * 3] = (a0 + 2 * mod - a1 - a2na3iimag) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        le = le - 2;
      }
    }
  }
}

template <typename mint>
void transposed_ntt(vector<mint> &a, bool inverse) {
  if (!inverse) {
    ntt(a, 1);
    reverse(a.begin() + 1, a.end());
    for (auto &x: a) {
      x *= a.size();
    }
  }
  else {
    reverse(a.begin() + 1, a.end());
    ntt(a, 0);
    for (auto &x: a) {
      x /= mint(a.size());
    }
  }
}

template <class mint>
vector<mint> convolution_naive(vector<mint> a, vector<mint> b) {
  vector<mint> res(size(a) + size(b) - 1);
  for (int i = 0; i < int(size(a)); i++) {
    if (a[i] == mint(0)) continue; 
    for (int j = 0; j < int(size(b)); j ++) {
      res[i + j] = res[i + j] + a[i] * b[j];
    }
  }
  return res;
}

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  int n = a.size();
  int m = b.size();
  if (min(n, m) <= 60) return convolution_naive(a, b);
  int le = 1;
  while (le < n + m - 1) le = le * 2;
  a.resize(le), b.resize(le);
  ntt(a, 0), ntt(b, 0);
  for (int i = 0; i < le; i++) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <class mint>
vector<mint> convolution_garner(vector<mint> a, vector<mint> b) {
  const int mod = mint::get_mod();
  int n = int(a.size()), m = int(b.size());
  const vector<long long> nttfriend = {167772161, 469762049, 754974721};
  using mint1 = modint<167772161>;
  using mint2 = modint<469762049>;
  using mint3 = modint<754974721>;
  vector<mint1> a1(n), b1(m);
  vector<mint2> a2(n), b2(m);
  vector<mint3> a3(n), b3(m);
  for (int i = 0; i < n; i++) {
    a1[i] = a[i].val, a2[i] = a[i].val, a3[i] = a[i].val;
  }
  for (int i = 0; i < m; i++) {
    b1[i] = b[i].val, b2[i] = b[i].val, b3[i] = b[i].val;
  }
  vector<mint1> c1 = convolution_ntt(a1, b1);
  vector<mint2> c2 = convolution_ntt(a2, b2);
  vector<mint3> c3 = convolution_ntt(a3, b3);

  vector<mint> c(n + m - 1);
  for (int i = 0; i < n + m - 1; i++) {
    vector<long long> Rem = {c1[i].val, c2[i].val, c3[i].val};
    c[i] = mint(Garner(Rem, nttfriend, mod));
  }
  return c;
}

template <class mint>
vector<mint> convolution(vector<mint> a, vector<mint> b) {
  if (mint::ntt_info().first == -1) return convolution_garner(a, b);
  return convolution_ntt(a, b);
}

template <class mint>
vector<mint> fps_inv(vector<mint> f, int deg = -1) {
  assert (f[0] != mint(0));
  if (deg == -1) deg = int(f.size());
  f.resize(deg);
  int n = int(f.size());
  // ntt prime
  if (mint::ntt_info().first != -1) {
    vector<mint> g(deg, mint(0));
    g[0] = f[0].inverse();
    int le = 1;
    while (le < deg) {
      vector<mint> a(2 * le, mint(0)), b(2 * le, mint(0));
      for (int i = 0; i < min(n, 2 * le); i++) {
        a[i] = f[i];
      }
      for (int i = 0; i < le; i++) {
        b[i] = g[i];
      }
      ntt(a, 0), ntt(b, 0);
      for (int i = 0; i < 2 * le; i++) {
        a[i] *= b[i];
      }
      ntt(a, 1);
      for (int i = 0; i < le; i++) {
        a[i] = mint(0);
      }
      ntt(a, 0);
      for (int i = 0; i < 2 * le; i++) {
        a[i] *= b[i];
      }
      ntt(a, 1);
      for (int i = le; i < min(deg, 2 * le); i++) {
        g[i] = -a[i];
      }
      le *= 2;
    }
    return g;
  }
  // not ntt prime
  // doubling
  else {
    vector<mint> g = {f[0].inverse()};
    vector<mint> gg(0);
    int le = 1;
    while (le < deg) {
      gg = convolution(g, g);
      gg.resize(2 * le);
      vector<mint> ff = {f.begin(), f.begin() + min(2 * le, n)};
      gg = convolution(gg, f);
      g.resize(2 * le);
      for (int i = 0; i < 2 * le; i++) {
        g[i] = g[i] + g[i] - gg[i];
      }
      le *= 2;
    }
    g.resize(deg);
    return g;
  }
}

template <class mint>
vector<mint> fps_exp(vector<mint> f, int deg = -1) {
  if (deg == -1) deg = int(f.size());
  f.resize(deg);
  int n = int(f.size());
  assert (n > 0);
  assert (f[0] == mint(0));
  // ntt prime
  if (mint::ntt_info().first != -1) {
    vector<mint> g = {mint(1), mint(0)};
    if (f.size() > 1) g[1] = f[1];
    vector<mint> h = {mint(1)};
    vector<mint> p, q;
    q = {mint(1), mint(1)};
    int le = 2;
    while (le < deg) {
      vector<mint> y = g;
      y.resize(2 * le);
      ntt(y, 0);
      p = q;
      vector<mint> z(le);
      for (int i = 0; i < le; i++) {
        z[i] = y[i] * p[i];
      }
      ntt(z, 1);
      for (int i = 0; i < le / 2; i++) {
        z[i] = mint(0);
      }
      ntt(z, 0);
      for (int i = 0; i < int(p.size()); i++) {
        z[i] = z[i] * (-p[i]);
      }
      ntt(z, 1);
      for (int i = le / 2; i < le; i++) {
        h.push_back(z[i]);
      }
      q = h;
      q.resize(2 * le);
      ntt(q, 0);

      vector<mint> x(le, mint(0));
      for (int i = 0; i < le - 1; i++) {
        x[i] = f[i + 1] * mint(i + 1);
      }
      ntt(x, 0);
      for (int i = 0; i < le; i++) {
        x[i] *= y[i];
      }
      ntt(x, 1);

      for (int i = 0; i < le - 1; i++) {
        x[i] -= g[i + 1] * mint(i + 1);
      }

      x.resize(2 * le);
      for (int i = 0; i < le - 1; i++) {
        x[i + le] = x[i], x[i] = mint(0);
      }
      ntt(x, 0);
      for (int i = 0; i < 2 * le; i++) {
        x[i] *= q[i];
      }
      ntt(x, 1);
      for (int i = int(x.size()) - 2; i >= 0; i--) {
        x[i + 1] = x[i] * mint(i + 1).inverse();
      }
      for (int i = 0; i < le; i++) {
        x[i] = mint(0);
      }
      for (int i = le; i < 2 * le; i++) {
        x[i] += f[i];
      }
      ntt(x, 0);
      for (int i = 0; i < 2 * le; i++) {
        x[i] *= y[i];
      }
      ntt(x, 1);
      for (int i = le; i < int(x.size()); i++) {
        g.push_back(x[i]);
      }
      le *= 2;
    }
    g.resize(deg);
    return g;
  }
  // not ntt prime
  // Newton's method
  else {
    int log = 0;
    while ((1 << log) < deg) log++;
    f.resize(1 << log);
    vector<mint> df(1 << log, mint(0));
    for (int i = 1; i < (1 << log); i++) {
      df[i - 1] = f[i] * mint(i);
    }
    vector<mint> g = {mint(1)}, h = {mint(1)};
    int le = 1;
    vector<mint> p;
    for (int _ = 0; _ < log; _++) {
      p = convolution(g, h);
      p.resize(le);
      p = convolution(p, h);
      p.resize(le);
      h.resize(le);
      for (int i = 0; i < le; i++) {
        h[i] += h[i] - p[i];
      }
      p = {df.begin(), df.begin() + le - 1};
      p = convolution(g, p);
      p.resize(2 * le - 1);
      for (int i = 0; i < 2 * le - 1; i++) {
        p[i] = -p[i];
      }
      for (int i = 0; i < le - 1; i++) {
        p[i] += g[i + 1] * mint(i + 1);
      }
      p = convolution(p, h);
      p.resize(2 * le - 1);
      for (int i = 0; i < le - 1; i++) {
        p[i] += df[i];
      }
      p.push_back(mint(0));
      for (int i = 2 * le - 2; i >= 0; i--) {
        p[i + 1] = p[i] * mint(i + 1).inverse();
      }
      p[0] = mint(0);
      for (int i = 0; i < 2 * le; i++) {
        p[i] = f[i] - p[i];
      }
      p[0] = mint(1);
      g = convolution(g, p);
      g.resize(2 * le);
      le *= 2;
    }
    g.resize(deg);
    return g;
  }
}

template <class mint>
vector<mint> fps_log(vector<mint> f, int deg = -1) {
  if (deg == -1) deg = int(f.size());
  f.resize(deg);
  int n = int(f.size());
  assert (n > 0);
  assert (f[0] == mint(1));
  vector<mint> df(deg, mint(0));
  for (int i = 1; i < min(deg + 1, n); i++) {
    df[i - 1] = f[i] * mint(i);
  }
  vector<mint> f_inv = fps_inv(f, deg);
  vector<mint> g = convolution(df, f_inv);
  g.resize(deg);
  for (int i = deg - 2; i >= 0; i--) {
    g[i + 1] = g[i] * mint(i + 1).inverse();
  }
  g[0] = mint(0);
  return g;
}

template <class mint>
vector<mint> fps_pow(vector<mint> f, long long k, int deg = -1) {
  if (deg == -1) deg = int(f.size());
  if (k == 0) {
    vector<mint> g(deg, mint(0));
    g[0] = mint(1);
    return g;
  }
  f.resize(deg);
  int d = 0;
  long long kk = 0; // overflow対策
  while (d < deg) {
    if (f[d] != mint(0)) break;
    d++;
    kk += k;
    if (kk >= deg) {
      vector<mint> g(deg, mint(0));
      return g;
    }
  }
  if (d == deg) {
    vector<mint> g(deg, mint(0));
    return g;
  }
  int dk = kk;
  mint a = f[d];
  mint a_inv = a.inverse();
  vector<mint> g(deg - dk, mint(0));
  for (int i = 0; i < deg - dk; i++) {
    g[i] = f[i + d] * a_inv;
  }
  g = fps_log(g);
  for (int i = 0; i < deg - dk; i++) {
    g[i] *= mint(k);
  }
  g = fps_exp(g);
  a = a.pow(k);
  vector<mint> res(deg, mint(0));
  for (int i = 0; i < deg - dk; i++) {
    res[i + dk] = g[i] * a;
  }
  return res;
}

template <typename mint>
vector<mint> fps_sqrt(vector<mint> f, int deg = -1) {
  if (deg == -1) deg = int(f.size());
  f.resize(deg);
  int n = int(f.size());
  if (f[0] == 1) {
    vector<mint> g(1);
    g[0] = 1;
    int le = 1;
    while (le < n) {
      le = min(2 * le, n);
      g.resize(le);
      vector<mint> h = {f.begin(), f.begin() + le};
      h = convolution(fps_inv(g), h);
      h.resize(le);
      for (int i = 0; i < le; i++) {
        g[i] += h[i];
      }
      mint inv_2 = mint(2).inverse();
      for (int i = 0; i < le; i++) {
        g[i] *= inv_2;
      }
    }
    return g;
  }
  int d = 0;
  while (d < n) {
    if (f[d] == mint(0)) {
      d++;
      continue;
    }
    break;
  }
  if (d == n) return f;
  if (d & 1) return {};
  vector<mint> g(n - d, mint(0));
  long long cc = Tonelli_Shanks(f[d].val, mint::get_mod());
  if (cc == -1) return {};
  mint c = mint(cc);
  mint c_inv = c.inverse() * c.inverse(); 
  for (int i = 0; i < n - d; i++) {
    g[i] = f[i + d] * c_inv;
  }
  g = fps_sqrt(g, n);
  g.resize(n);
  for (int i = n - 1; i >= 0; i--) {
    if (i >= d / 2) g[i] = g[i - d / 2] * c;
    else g[i] = 0;
  }
  return g;
}

template <class mint>
vector<mint> fps_composition(vector<mint> f, vector<mint> g) {
  assert (f.size() == g.size());
  int N = int(f.size());
  if (N == 0) {
    vector<mint> res = {};
    return res;
  }

  int n = 1, log = 0;
  while (n < N) {
    n *= 2, log++;
  }
  f.resize(n), g.resize(n);

  vector<mint> W(2 * n);
  vector<int> btr(2 * n);
  for (int i = 0; i < 2 * n; i++) {
    btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << log);
  }
  int t = mint::ntt_info().first;
  mint r = mint(mint::ntt_info().second);
  mint dw = (r.inverse()).pow((1 << t) / (4 * n)), w = mint(1);
  for (auto i: btr) {
    W[i] = w;
    w *= dw;
  }

  mint inv_2 = mint(2).inverse();

  auto rec = [&](auto & rec, int n, int k, vector<mint> Q) -> vector<mint> {
    if (n == 1) {
      // A
      vector<mint> p(2 * k);
      reverse(f.begin(), f.end());
      for (int i = 0; i < k; i++){
        p[2 * i] = f[i];
      }
      return p;
    }
    // B
    Q.resize(4 * n * k);
    Q[2 * n * k] = mint(1);
    ntt(Q, 0);
    vector<mint> nxt_Q(2 * n * k);
    for (int i = 0; i < 2 * n * k; i++){
      nxt_Q[i] = Q[2 * i] * Q[2 * i + 1];
    }
    ntt(nxt_Q, 1);
    for (int j = 0; j < 2 * k; j++) {
      for (int i = n / 2; i < n; i++) {
        nxt_Q[n * j + i] = mint(0);
      }
    }
    nxt_Q[0] = mint(0);

    vector<mint> p = rec(rec, n / 2, 2 * k, nxt_Q);
    for (int j = 0; j < 2 * k; j++) {
      for (int i = n / 2; i < n; i++) {
        p[n * j + i] = mint(0);
      }
    }
    transposed_ntt(p, 1);
    p.resize(4 * n * k);
    for (int i = 2 * n * k - 1; i >= 0; i--) {
      p[2 * i + 1] = ((-inv_2) * W[i]) * (Q[2 * i] * p[i]);
      p[2 * i] = (inv_2 * W[i]) * (Q[2 * i + 1] * p[i]);
    }
    transposed_ntt(p, 0);
    p.resize(2 * n * k);
    return p;
  };

  vector<mint> Q(2 * n);
  for (int i = 0; i < n; i++) {
    Q[i] -= g[i];
  }
  vector<mint> p = rec(rec, n, 1, Q);
  // C
  p.resize(n);
  reverse(p.begin(), p.end());
  p.resize(N);
  return p;
}

template<class mint>
vector<mint> power_projection(vector<mint> f, vector<mint> wt, int m) {
  if (f.size() == 0) return vector<mint>(m, mint(0));

  if (f[0] != 0) {
    mint c = f[0];
    f[0] = 0;
    vector<mint> A = power_projection(f, wt, m);
    for (int p = 1; p < m; p++) A[p] /= p;
    vector<mint> B(m);
    mint pow = 1;
    for (int q = 0; q < m; q++){
      B[q] = pow * fact_inv<mint>(q);
      pow *= c;
    }
    A = convolution(A, B);
    A.resize(m);
    for (int i = 0; i < m; i++) A[i] *= fact<mint>(i);
    return A;
  }

  int n = 1, log = 0;

  while (n < int(f.size())){
    n *= 2, log += 1;
  }
  f.resize(n), wt.resize(n);
  reverse(wt.begin(), wt.end());

  vector<mint> W(2 * n);
  vector<int> btr(2 * n);
  for (int i = 0; i < 2 * n; i++) {
    btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << log);
  }
  int t = mint::ntt_info().first;
  mint r = mint(mint::ntt_info().second);
  mint dw = (r.inverse()).pow((1 << t) / (4 * n)), w = mint(1);
  for (auto i: btr) {
    W[i] = w;
    w *= dw;
  }

  int k = 1;
  vector<mint> P(2 * n, mint(0)), Q(2 * n, mint(0));
  for (int i = 0; i < n; i++) {
    P[i] = wt[i], Q[i] = -f[i];
  }

  mint inv_2 = mint(2).inverse();

  while (n > 1) {
    P.resize(4 * n * k), Q.resize(4 * n * k);
    Q[2 * n * k] = mint(1);
    ntt(P, 0), ntt(Q, 0);
    for (int i = 0; i < 2 * n * k; i++) {
      P[i] = (P[2 * i] * Q[2 * i + 1] - P[2 * i + 1] * Q[2 * i]) * (inv_2 * W[i]);
      Q[i] = Q[2 * i] * Q[2 * i + 1];
    }
    P.resize(2 * n * k), Q.resize(2 * n * k);
    ntt(P, 1), ntt(Q, 1);
    for (int j = 0; j < 2 * k; j++) {
      for (int i = n / 2; i < n; i++) {
        P[n * j + i] = mint(0), Q[n * j + i] = mint(0);
      }
    }
    Q[0] = mint(0);
    n >>= 1, k <<= 1;
  }

  vector<mint> p(k, mint(0));
  for (int i = 0; i < k; i++) {
    p[i] = P[2 * i];
  }
  reverse(p.begin(), p.end());
  p.resize(m);
  return p;
}

template <typename mint>
vector<mint> fps_compositional_inverse(vector<mint> f) {
  int n = int(f.size()) - 1;
  if (n == -1) return {};
  assert (f[0] == 0);
  if (n == 0) return f;
  assert (f[1] != 0);
  mint c = f[1];
  mint ic = c.inverse();
  for (int i = 0; i < n + 1; i++) f[i] = f[i] * ic;
  vector<mint> wt(n + 1);
  wt[n] = 1;

  vector<mint> A = power_projection(f, wt, n);
  vector<mint> g(n);
  for (int i = 1; i < n + 1; i++) g[n - i] = (A[i] * n) / i;
  mint k = (-mint(1)) / n;
  g = fps_pow(g, k.val);
  reverse(g.begin(), g.end());
  g.push_back(0);
  reverse(g.begin(), g.end());

  mint Pow = 1;
  for (int i = 0; i < int(g.size()); i++){
    g[i] *= Pow, Pow *= ic;
  }
  return g;
}

using mint = modint<998244353>;

int main() {
  INT(N, Q);
  VC(mint, A, N);
  FOR(Q) {
    INT(q);
    if (q == 1) {
      INT(k, x);
      vector<mint> g(N + 1, mint(1));
      FOR(i, N) {
        g[i + 1] = g[i] * mint(k);
      }
      g = fps_pow(g, x);
      A = convolution(A, g);
      A.resize(N);
    }
    else {
      INT(x);
      print(A[x - 1]);
    }
  }
}
0