結果
問題 |
No.3043 括弧列の数え上げ
|
ユーザー |
👑 |
提出日時 | 2025-03-01 10:20:25 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 61,613 bytes |
コンパイル時間 | 12,330 ms |
コンパイル使用メモリ | 290,968 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2025-03-01 10:20:40 |
合計ジャッジ時間 | 14,109 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 45 |
ソースコード
#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE /* #define SUBMIT_ONLY */ #define DEBUG_OUTPUT #define SAMPLE_CHECK I #endif #ifdef INCLUDE_MAIN VO Solve() { CIN( int , N ); constexpr const int answer [] = {0,0,0,0,1,0,7,0,37,0,176,0,794,0,3473,0,14893,0,63004,0,263950,0,1097790,0,4540386,0,18696432,0,76717268,0,313889477,0,282976380,0,227948287,0,261542705,0,339306604,0,164617528,0,592218358,0,506309695,0,48223128,0,701779542,0,136344203,0,704195775,0,7336525,0,1838188,0,87614831,0,506651337,0,174143687,0,67043830,0,40177065,0,882801901,0,872285136,0,591865463,0,353771365,0,158685839,0,207067835,0,34329612,0,406358986,0,243047463,0,490241907,0,366293100,0,411262411,0,292174673,0,160199615,0,828664831,0,628470688,0,156991010,0,840202541,0,763991045,0,88761008,0,577361612,0,826078319,0,252220412,0,178257466,0,204565960,0,341080326,0,123546423,0,566385931,0,855772984,0,488795789,0,90857908,0,265054321,0,93938856,0,229796499,0,591292116,0,34359540,0,284698968,0,413568802,0,774016286,0,717269929,0,189040788,0,786845791,0,475522596,0,345785228,0,81274272,0,996886562,0,37184290,0,122547324,0,246598932,0,937817160,0,970949432,0,386470711,0,906487433,0,12655839,0,412585960,0,548584909,0,151096731,0,425772178,0,275459124,0,61616881,0,97198124,0,856502136,0,507582597,0,744220235,0,489964005,0,218883606,0,527812696,0,411164485,0,774120642,0,256647098,0,763077015,0,119592691,0,114770809,0,831166211,0,557687257,0,931892013,0,491534887,0,836549700,0,427325398,0,175726106,0,772699091,0,847461192,0,178199050,0,431843885,0,948751991,0,262871869,0,871661723,0,825192803,0,206733230,0,168377541,0,843641187,0,944451956,0,621524177,0,37629834,0,814658077,0,465315267,0,232361709,0,387822560,0,881647252,0,167882677,0,646793133,0,242709184,0,914293439,0,148194836,0,160389598,0,524137139,0,455789251,0,665524076,0,485979323,0,416143508,0,532138569,0,400813732,0,536319820,0,702008840,0,721016388,0,714230659,0,554941121,0,85453042,0,429831813,0,515626953,0,469853540,0,329940763,0,916340906,0,400395217,0,247488354,0,585274124,0,713412470,0,249091460,0,106602456,0,130033512,0,932939779,0,574098804,0,321260726,0,876194307,0,988672926,0,810141252,0,518079643,0,560544226,0,668194916,0,995756321,0,395701511,0,60105151,0,343199935,0,282163317,0,66979228,0,360336220,0,664590549,0,771745785,0,160544776,0,885918858,0,161695319,0,797523270,0,877170680,0,265035686,0,22624355,0,841572248,0,899559906,0,604740943,0,289302404,0,790433717,0,980410210,0,381630142,0,744350217,0,797043370,0,780023285,0,762682380,0,837271109,0,657235098,0,96382977,0,499079203,0,586659303,0,450269526,0,414552482,0,950540883,0,3032189,0,449005734,0,703344928,0,23403854,0,487680963,0,740351913,0,163054862,0,964242254,0,336137618,0,884689748,0,564750240,0,923216294,0,815596081,0,686743142,0,483849220,0,860018920,0,642081076,0,447710609,0,355796247,0,627789905,0,299910817,0,367228862,0,519575879,0,695400567,0,760237699,0,90253024,0,320891685,0,885416720,0,939035828,0,92004483,0,794081112,0,527367034,0,291708617,0,196475770,0,831885932,0,213987079,0,752619050,0,782569929,0,597774066,0,343045544,0,62838356,0,186924627,0,716065421,0,814218668,0,105062861,0,975077895,0,668742443,0,330867482,0,386949287,0,478986825,0,570164729,0,954986327,0,688183580,0,232095430,0,583804381,0,59842347,0,349072071,0,648084691,0,429691573,0,54824307,0,591013677,0,702541835,0,631599956,0,893242353,0,880026588,0,649044145,0,810352907,0,733150705,0,551149941,0,868668747,0,650901055,0,252496137,0,642755218,0,801012401,0,722557305,0,533152031,0,946000325,0,956309098,0,885341899,0,110734920,0,493973856,0,620142697,0,38072825,0,249879422,0,671844932,0,203663103,0,580210329,0,578478509,0,340022470,0,25728799,0,926078190,0,302478101,0,262111962,0,773547890,0,446897204,0,859162849,0,272880423,0,418336332,0,687492855,0,949240939,0,893461996,0,175001138,0,139333455,0,729663836,0,137990874,0,178584834,0,564406394,0,19268142,0,525019028,0,312978956,0,114687584,0,648393633,0,594638312,0,34978410,0,230729291,0,86115095,0,898922050,0,473240194,0,458502212,0,467241639,0,353749558,0,900071410,0,704620669,0,887397452,0,458218269,0,877932506,0,676961475,0,854663873,0,169118375,0,359233368,0,967031558,0,530713044,0,849233879,0,511058319,0,853206308,0,803615496,0,827101089,0,805980196,0,648380466,0,143015422,0,645402494,0,991149112,0,462081662,0,469511630,0,266966906,0,810646628,0,261499658,0,966203769,0,279036014,0,51680302,0,652742868,0,762199253,0,532393510,0,81429817,0,315947722,0,514781486,0,641922189,0,214688209,0,817260832,0,302959355,0,442158364,0,321676401,0,1064127,0,909573375,0,955746435,0,658159853,0,402305715,0,821662017,0,512024714,0,914684963,0,409310313,0,379427348,0,220774174,0,241738503,0,341393726,0,621282653,0,706353220,0,689136360,0,562983724,0,610381463,0,748205260,0,49517874,0,554409207,0,655924083,0,536279577,0,19341668,0,875676904,0,176173120,0,247372485,0,965665381,0,173235423,0,646997193,0,110032719,0,856740122,0,155649985,0,64091335,0,548373957,0,694310231,0,456201303,0,766130632,0,658081357,0,917870336,0,911702240,0,810341294,0,811239697,0,602117870,0,23898430,0,323154628,0,611551779,0,214642995,0,461795936,0,770052164,0,915521474,0,355376565,0,3771173,0,462751065,0,389766529,0,363781901,0,874998712,0,617569060,0,251657568,0,118489094,0,954127081,0,165743775,0,119052388,0,134975447,0,598894381,0,27564493,0,295963407,0,447173962,0,490251049,0,511980286,0,382302365,0,684348892,0,2749201,0,918378516,0,860668603,0,31576698,0,92560884,0,825124337,0,827339081,0,51932734,0,708923508,0,143010228,0,222093516,0,733968937,0,771472430,0,151996677,0,961651730,0,271412889,0,154043933,0,118758937,0,692147324,0,8371659,0,215080220,0,963255406,0,991618442,0,53554434,0,447200810,0,575685854,0,60165363,0,339006293,0,324331602,0,456785023,0,213250666,0,638127185,0,469107452,0,664925405,0,801525769,0,14060357,0,489008059,0,437311612,0,354996289,0,771881750,0,361775255,0,766004444,0,334643158,0,230761219,0,270203832,0,324384695,0,377650525,0,203278909,0,529075083,0,102179795,0,632933216,0,619388272,0,959754937,0,440458134,0,525295788,0,27913415,0,721474748,0,931540524,0,537570292,0,392330966,0,531544200,0,252723014,0,680128933,0,413531938,0,650621441,0,500541511,0,858101795,0,364670366,0,390633098,0,229520653,0,336269792,0,621781688,0,892867575,0,316964336,0,448708807,0,300921238,0,954609258,0,134751932,0,196305792,0,315017273,0,877194487,0,5136672,0,151603768,0,438886168,0,325822687,0,967607187,0,584726740,0,591227727,0,202576824,0,402183417,0,628442716,0,703168736,0,570628116,0,401641267,0,147297381,0,336355064,0,820717344,0,577539478,0,496320914,0,213348609,0,121863727,0,935675235,0,585388978,0,279858071,0,487874097,0,712477981,0,241250353,0,706778451,0,23388597,0,202268381,0,723650482,0,440141366,0,653211823,0,413325328,0,234213349,0,640374370,0,713261194,0,542415246,0,914503874,0,147977440,0,733715252,0,150403600,0,989132868,0,290802053,0,407490250,0,613820580,0,366828881,0,358389284,0,11297686,0,741021838,0,554870678,0,191717762,0,38289471,0,221756242,0,734797380,0,221809894,0,882363577,0,856864938,0,73934261,0,683717253,0,133929883,0,878045968,0,319076294,0,12839232,0,816878591,0,421559886,0,107905582,0,107999058,0,657003201,0,38880182,0,704252603,0,912093337,0,297271894,0,22689217,0,487097671,0,493658861,0,23692107,0,213902387,0,919768831,0,238675261,0,599435072,0,177194966,0,72057647,0,932917658,0,242996672,0,443544879,0,564039444,0,450373167,0,357076421,0,744701346,0,673278374,0,778497449,0,954831414,0,877193402,0,506000863,0,185259869,0,954951058,0,778208824,0,399927354,0,315633988,0,446587495,0,802476185,0,783591460,0,930385811,0,922480951,0,255110532,0,431035345,0,291118001,0,609753366,0,485816628,0,793867625,0,111198317,0,240224128,0,889024271,0,347533181,0,221539311,0,484136130,0,571699905,0,54959628,0,731436529,0,233230814,0,972312618,0,408680073,0,930803999,0,358518121,0,365055259,0,922544919,0,98233611,0,737135908,0,53645582,0,107460425,0,554585968,0,412217963,0,933373177,0,223233512,0,403729786,0,683695538,0,974136364,0,870652494,0,419456848,0,822139685,0,937365154,0,575353366,0,938483210,0,779333010,0,33297700,0,959523167,0,31288762,0,794664448,0,744603753,0,242380418,0,408028589,0,562945348,0,591231833,0,514221802,0,419572052,0,863905224,0,717967511,0,624273675,0,218533126,0,768898167,0,47966668,0,315416499,0,443115432,0,769152572,0,760509466,0,395709890,0,336506642,0,777613322,0,197691800,0,592436323,0,366592877,0,681283646,0,312526970,0,389747139,0,133081606,0,356456832,0,359626425,0,626064558,0,877534814,0,356731953,0,320707798,0,138184333,0,877108416,0,977905571,0,909515438,0,337213631,0,264435668,0,475967953,0,569911565,0,76982777,0,336027949,0,716129661,0,163522994,0,304580784,0,324172991,0,549887046,0,122506978,0,221211829,0,992603197,0,582695057,0,252866056,0,186865582,0,43169826,0,982292488,0,773066838,0,203569069,0,612745733,0,343364907,0,489406235,0,842500812,0,85562659,0,883293336,0,284184791,0,837736104,0,390637141,0,100120859,0,289360330,0,295535518,0,655370366,0,77939021,0,919299234,0,111152647,0,552013077,0,597846625,0,658787311,0,337411525,0,41791180,0,384050360,0,604051535,0,638969074,0,132434011,0,244949061,0,669871365,0,518441453,0,764137214,0,73487834,0,517563453,0,556647774,0,357852046,0,831703644,0,871195888,0,277785102,0,832393229,0,520636958,0,45940491,0,170628729,0,37770195,0,924939939,0,288116267,0,706962296,0,521337394,0,460171394,0,883476082,0,216080160,0,320553160,0,462921560,0,773612115,0,806325093,0,888064785,0,630547918,0,767429051,0,881003270,0,248396606,0,925752917,0,360884361,0,569803088,0,374342332,0,237080996,0,924511450,0,82208861,0,947754695,0,985191339,0,635307591,0,488922062,0,550334435,0,555834045,0,824456802,0,472875620,0,381115512,0,818753359,0,896711160,0,371429685,0,656697234,0,107277025,0,967696397,0,592557908,0,373197972,0,119238147,0,406064009,0,374655886,0,75355244,0,264336967,0,42570769,0,349113045,0,326483360,0,172368163,0,862287017,0,30730601,0,652648477,0,36374430,0,456327661,0,5117501,0,12662095,0,935405718,0,556455058,0,236772021,0,203284540,0,928879775,0,661640694,0,268984750,0,527674394,0,30638039,0,790828264,0,55772177,0,224016818,0,206647615,0,315298085,0,221344095,0,288757764,0,73377855,0,555401027,0,991316678,0,829494402,0,45184415,0,854609604,0,801451184,0,938583506,0,622786661,0,281095382,0,237287415,0,584887585,0,948682564,0,135372979,0,263307478,0,183431133,0,606167713,0,538145489,0,685513916,0,821182346,0,459916305,0,417695788,0,490186273,0,315726934,0,737236087,0,254676760,0,48591024,0,450354276,0,55887054,0,694301669,0,21813047,0,600980636,0,406969670,0,937200190,0,311525689,0,54136217,0,886758489,0,771392500,0,964955561,0,49511808,0,159464456,0,182763227,0,627950589,0,759341594,0,745136362,0,154524676,0,864292239,0,810373496,0,108368624,0,847599136,0,639652647,0,545247802,0,114118302,0,315019637,0,138966812,0,199423846,0,474249342,0,331948922,0,612973632,0,292596691,0,650129909,0,645929032,0,599286060,0,293897270,0,257907326,0,517866074,0,989369378,0,386464295,0,378819129,0,801821869,0,679663471,0,553611517,0,828672028,0,253915133,0,780226818,0,36293473,0,519560622,0,442304184,0,372053361,0,665315827,0,713494744,0,872972035,0,104015958,0,315255178,0,979474953,0,655353805,0,601375658,0,132881303,0,541263462,0,214345418,0,920831938,0,279925337,0,509602444,0,766738676,0,148980885,0,204166435,0,708088730,0,209057743,0,381751394,0,698797678,0,36211926,0,464228478,0,573199765,0,352720371,0,173750949,0,164408108,0,128746234,0,216540414,0,479666071,0,151218938,0,769295297,0,553306075,0,214275082,0,989831217,0,442596057,0,980300276,0,476574111,0,596614658,0,856923265,0,750908817,0,421208341,0,384007807,0,673697755,0,672985890,0,965776681,0,379909252,0,573234691,0,104195642,0,150024561,0,609872519,0,233569179,0,975210239,0,599834944,0,345270378,0,951345460,0,430114669,0,703695618,0,914275501,0,914102242,0,92243251,0,807524189,0,413094526,0,55855397,0,867708688,0,323130530,0,414061506,0,444509856,0,212681283,0,115720874,0,44435185,0,472657046,0,776648143,0,840662827,0,446356416,0,242217204,0,884486194,0,203776033,0,467213614,0,490922229}; RETURN( answer[N] ); } REPEAT_MAIN(1); #else /* INCLUDE_MAIN */ #ifdef INCLUDE_SUB /* COMPAREに使用。圧縮時は削除する。*/ MP Naive( ll N , ll M , ll K , const bool& debug_output = true ) { MP answer{}; return answer; } /* COMPAREに使用。圧縮時は削除する。*/ MP Answer( ll N , ll M , ll K , const bool& debug_output = true ) { MP answer{}; return answer; } /* 圧縮時は中身だけ削除する。*/ IN VO Experiment() { /* // 1変数 ../Contest/Template/Experiment/OneVariable.txt */ /* // 2変数 ../Contest/Template/Experiment/TwoVariable.txt */ /* // 3変数 ../Contest/Template/Experiment/ThreeVariable.txt */ } /* 圧縮時は中身だけ削除する。*/ IN VO SmallTest() { /* // 数 ../Contest/Template/SmallTest/Number.txt */ /* // 配列 ../Contest/Template/SmallTest/Array.txt */ /* // 順列 ../Contest/Template/SmallTest/Permutation.txt */ /* // 文字列 ../Contest/Template/SmallTest/String.txt */ /* // グリッド ../Contest/Template/SmallTest/Grid.txt */ /* // グラフ ../Contest/Template/SmallTest/Graph.txt */ /* // 重み付きグラフ ../Contest/Template/SmallTest/WeightedGraph.txt */ /* // 区間クエリ ../Contest/Template/SmallTest/IntervalQuery.txt */ } /* 圧縮時は中身だけ削除する。*/ IN VO RandomTest( const int& test_case_num ) { /* // 数 ../Contest/Template/RandomTest/Number.txt */ /* // 配列 ../Contest/Template/RandomTest/Array.txt */ /* // 順列 ../Contest/Template/RandomTest/Permutation.txt */ /* // 文字列 ../Contest/Template/RandomTest/String.txt */ /* // グリッド ../Contest/Template/RandomTest/Grid.txt */ /* // グラフ ../Contest/Template/RandomTest/Graph.txt */ /* // 重み付きグラフ ../Contest/Template/RandomTest/WeightedGraph.txt */ /* // 区間クエリ ../Contest/Template/RandomTest/IntervalQuery.txt */ /* // 多種クエリ ../Contest/Template/RandomTest/MultiTypeQuery.txt */ REPEAT( test_case_num ){ } CERR( "全ての出力が一致しました。" ); } #define INCLUDE_MAIN #include __FILE__ #else /* INCLUDE_SUB */ #ifdef INCLUDE_LIBRARY /* VVV 常設でないライブラリは以下に挿入する。*/ /* // AffineSpace ../Contest/Template/Library/AffineSpace.txt */ /* // Arithmetic ../Contest/Template/Library/Arithmetic.txt */ /* // BFS ../Contest/Template/Library/BFS.txt */ /* // BIT ../Contest/Template/Library/BIT.txt */ /* // CoordinateCompress SetTheory/DirectProduct/CoordinateCompress/compress.txt */ /* // DFS ../Contest/Template/Library/DFS.txt */ /* // DifferenceSequence ../Contest/Template/Library/DifferenceSequence.txt */ /* // Dijkstra ../Contest/Template/Library/Dijkstra.txt */ /* // Knapsack ../Contest/Template/Library/Knapsack.txt */ /* // Matrix ../Contest/Template/Library/Matrix.txt */ /* // Set ../Contest/Template/Library/Set.txt */ /* // Polynomial ../Contest/Template/Library/Polynomial.txt */ /* // SqrtDecomposition ../Contest/Template/Library/SqrtDecomposition.txt */ /* // UnionFind ../Contest/Template/Library/UnionFind.txt */ /* AAA 常設でないライブラリは以上に挿入する。*/ #define INCLUDE_SUB #include __FILE__ #else /* INCLUDE_LIBRARY */ #ifdef DEBUG #define _GLIBCXX_DEBUG #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #endif #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define CERR( ... ) #define CERRNS( ... ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define CERR_A( I , N , A ) #define TLE( CONDITION ) if( !( CONDITION ) ){ ll TLE_VAR = 1; while( TLE_VAR != 0 ){ ( TLE_VAR += 2 ) %= int( 1e9 ); } COUT( TLE_VAR ); } #define MLE( CONDITION ) if( !( CONDITION ) ){ vector<vector<ll>> MLE_VAR{}; REPEAT( 1e6 ){ MLE_VAR.push_back( vector<ll>( 1e6 ) ); } COUT( MLE_VAR ); } #define OLE( CONDITION ) if( !( CONDITION ) ){ REPEAT( 1e8 ){ COUT( "OLE" ); } } #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) SET( A ) #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #include <bits/stdc++.h> using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , false ); auto answer = Answer( __VA_ARGS__ , false ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ CERR( "出力の不一致が検出されました。" ); RE; } /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream<char,Traits> #define OS basic_ostream<char,Traits> #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin /* 型のエイリアス */ #define decldecay_t(VAR)decay_t<decltype(VAR)> TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...)); TE <TY T> US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; /* VVV 常設ライブラリは以下に挿入する。*/ #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp" #else /* BinarySearch (2KB)*/ /* EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。*/ #define BS(AN,MINIMUM,MAXIMUM,EXPRESSION,DESIRED_INEQUALITY,CO_TARGET,INEQUALITY_FOR_CHECK,UPDATE_U,UPDATE_L,UPDATE_AN)ST_AS(! is_same<decldecay_t(CO_TARGET),uint>::value && ! is_same<decldecay_t(CO_TARGET),ull>::value);ll AN = MINIMUM;{ll AN ## _L = MINIMUM;ll AN ## _R = MAXIMUM;AN = UPDATE_AN;ll EXPRESSION_BS;CO ll CO_TARGET_BS =(CO_TARGET);ll DIFFERENCE_BS;WH(AN ## _L < AN ## _R){DIFFERENCE_BS =(EXPRESSION_BS =(EXPRESSION))- CO_TARGET_BS;if(DIFFERENCE_BS INEQUALITY_FOR_CHECK 0){AN ## _R = UPDATE_U;}else{AN ## _L = UPDATE_L;}AN = UPDATE_AN;}if(AN ## _L > AN ## _R || !((EXPRESSION)DESIRED_INEQUALITY CO_TARGET_BS)){AN = MAXIMUM + 1;}} /* 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。*/ #define MIN_GEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,>=,AN,AN + 1,(AN ## _L + AN ## _R)>> 1) /* 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。*/ #define MAX_LEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,>,AN - 1,AN,(AN ## _L + 1 + AN ## _R)>> 1) /* 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。*/ #define MAX_GEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,<,AN - 1,AN,(AN ## _L + 1 + AN ## _R)>> 1) /* 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。*/ #define MIN_LEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,<=,AN,AN + 1,(AN ## _L + AN ## _R)>> 1) /* TwoPoitnterApproach (2KB)*/ /* VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。 ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を {INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。 ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが 条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの 更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの 更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる) ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合 auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; }; auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } }; TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) ); とすればtuple<int,int,ll>値配列intervalに{左端,右端,総和}の列が格納される。 VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが 大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。*/ #define TPA(AN,VAR_TPA,INIT,CONTINUE_CONDITION,UPDATE_L,UPDATE_R,ON_CONDITION,INFO_init)VE<tuple<decldecay_t(INIT),decldecay_t(INIT),decldecay_t(INFO_init)>> AN{};{auto init_TPA = INIT;decldecay_t(AN.front())AN ## _temp ={init_TPA,init_TPA,INFO_init};auto AN ## _prev = AN ## _temp;auto& VAR_TPA ## _L = get<0>(AN ## _temp);auto& VAR_TPA ## _R = get<1>(AN ## _temp);auto& VAR_TPA ## _info = get<2>(AN ## _temp);bool on_TPA_prev = false;WH(true){bool continuing = CONTINUE_CONDITION;bool on_TPA = continuing &&(ON_CONDITION);if(on_TPA_prev && ! on_TPA){AN.push_back(AN ## _prev);}if(continuing){if(on_TPA || VAR_TPA ## _L == VAR_TPA ## _R){AN ## _prev = AN ## _temp;UPDATE_R;}else{UPDATE_L;}}else{break;}on_TPA_prev = on_TPA;}} /* Random (1KB)*/ ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} /* Set (2KB)*/ #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Mathematics/Utility/Set/a_Body.hpp" #else #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;}; TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>; #define DF_OF_POP_FOR_SET(SET)TE <TY T> IN T pop_max(SET& S){AS(!S.empty());auto IT = --S.EN();CO T AN = MO(*IT);S.erase(IT);RE AN;}TE <TY T> IN T pop_min(SET& S){AS(!S.empty());auto IT = S.BE();CO T AN = MO(*IT);S.erase(IT);RE AN;}TE <TY T> IN SET& OP+=(SET& S,T t){S.insert(MO(t));RE S;}TE <TY T> IN SET& OP-=(SET& S,CO T& t){S.erase(t);RE S;}TE <TY T> IN CO T& Get(CO SET& S,int i){auto BE = S.BE(),EN = S.EN();auto& IT = i < 0?(++i,--EN):BE;WH(i > 0 && IT != EN){--i;++IT;}WH(i < 0 && IT != BE){++i;--IT;}AS(i == 0);RE *IT;} #define DF_OF_UNION_FOR_SET(SET)TE <TY T> IN SET& OP|=(SET& a0,CO SET& a1){for(auto& t:a1){a0 += t;}RE a0;}TE <TY T> IN SET OP|(SET a0,CO SET& a1){RE MO(a0 |= a1);} TE <TY SET,TY T> IN TY SET::const_iterator MaximumLeq(CO SET& S,CO T& t){auto IT = S.upper_bound(t);RE IT == S.BE()?S.EN():--IT;}TE <TY SET,TY T> IN TY SET::const_iterator MaximumLt(CO SET& S,CO T& t){auto IT = S.lower_bound(t);RE IT == S.BE()?S.EN():--IT;}TE <TY SET,TY T> IN TY SET::const_iterator MinimumGeq(CO SET& S,CO T& t){RE S.lower_bound(t);}TE <TY SET,TY T> IN TY SET::const_iterator MinimumGt(CO SET& S,CO T& t){RE S.upper_bound(t);}TE <TY SET,TY ITERATOR> IN VO EraseBack(SET& S,ITERATOR& IT){IT = S.erase(IT);}TE <TY SET,TY ITERATOR> IN VO EraseFront(SET& S,ITERATOR& IT){IT = S.erase(IT);IT == S.BE()?IT = S.EN():--IT;}TE <TE <TY...> TY SET,TY T,TY...Args> IN bool In(CO SET<T,Args...>& S,CO T& t){RE S.count(t)== 1;}DF_OF_POP_FOR_SET(set<T>);DF_OF_POP_FOR_SET(unordered_set<T>);DF_OF_POP_FOR_SET(multiset<T>);DF_OF_POP_FOR_SET(unordered_multiset<T>);DF_OF_UNION_FOR_SET(set<T>);DF_OF_UNION_FOR_SET(unordered_set<T>);DF_OF_UNION_FOR_SET(multiset<T>);DF_OF_UNION_FOR_SET(unordered_multiset<T>);DF_OF_UNION_FOR_SET(VE<T>);DF_OF_UNION_FOR_SET(LI<T>); #endif /* Tuple (6KB)*/ #define DF_OF_AR_FOR_TUPLE(OPR)TE <TY T,TY U,TE <TY...> TY PAIR> IN auto OP OPR ## =(PAIR<T,U>& t0,CO PAIR<T,U>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE <TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V>& t0,CO TUPLE<T,U,V>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE <TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V,W>& t0,CO TUPLE<T,U,V,W>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE <TY ARG,TY T,TY U,TE <TY...> TY PAIR> IN auto OP OPR ## =(PAIR<T,U>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V,W>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE <TE <TY...> TY TUPLE,TY...ARGS,TY ARG> IN auto OP OPR(CO TUPLE<ARGS...>& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE <TY T,TY U,TE <TY...> TY PAIR> IN auto OP INCR(PAIR<T,U>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE <TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP INCR(TUPLE<T,U,V>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE <TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP INCR(TUPLE<T,U,V,W>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE <CL Traits,TY T> IN IS& OP>>(IS& is,tuple<T>& arg){RE is >> get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP>>(IS& is,V<T,U>& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN IS& OP>>(IS& is,tuple<T,U,V>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN IS& OP>>(IS& is,tuple<T,U,V,W>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE <CL Traits,TY T> IN OS& OP<<(OS& os,CO tuple<T>& arg){RE os << get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP<<(OS& os,CO V<T,U>& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN OS& OP<<(OS& os,CO tuple<T,U,V>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN OS& OP<<(OS& os,CO tuple<T,U,V,W>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);TE <TY T,TY U,TE <TY...> TY V> IN auto OP-(CO V<T,U>& t)-> decltype(get<0>(t),t){RE{-get<0>(t),-get<1>(t)};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP-(CO tuple<T,U,V>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP-(CO tuple<T,U,V,W>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t),-get<3>(t)};}DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); TE <int n>CL TupleAccessIndex{};TE <TY...Types>CL Tuple:PU tuple<Types...>{PU:IN Tuple(Types&&... args);TE <TY...Args> IN Tuple(Args&&... args);TE <int n> IN auto& OP[](CO TupleAccessIndex<n>& i)NE;TE <int n> IN CO auto& OP[](CO TupleAccessIndex<n>& i)CO NE;};TE <TY...Types>CL tuple_size<Tuple<Types...>>:PU tuple_size<tuple<Types...>>{};TE <size_t n,TY...Types>CL tuple_element<n,Tuple<Types...>>:PU tuple_element<n,tuple<Types...>>{}; TE <TY T,TY U> US Pair = Tuple<T,U>;TE <TY INT> US T2 = Pair<INT,INT>;TE <TY INT> US T3 = Tuple<INT,INT,INT>;TE <TY INT> US T4 = Tuple<INT,INT,INT,INT>; CE TupleAccessIndex<0> O{};CE TupleAccessIndex<1> I{};CE TupleAccessIndex<2> II{};CE TupleAccessIndex<3> III{}; TE <TY...Types> IN Tuple<Types...>::Tuple(Types&&... args):tuple<Types...>(MO(args)...){}TE <TY...Types> TE <TY...Args> IN Tuple<Types...>::Tuple(Args&&... args):tuple<Types...>(forward<Args>(args)...){}TE <TY...Types> TE <int n> IN auto& Tuple<Types...>::OP[](CO TupleAccessIndex<n>& i)NE{RE get<n>(*TH);}TE <TY...Types> TE <int n> IN CO auto& Tuple<Types...>::OP[](CO TupleAccessIndex<n>& i)CO NE{RE get<n>(*TH);} #define DF_OF_HASH_FOR_TUPLE(PAIR)TE <TY T,TY U> IN size_t hash<PAIR<T,U>>::OP()(CO PAIR<T,U>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<T> h0;ST CO hash<U> h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} TE <TY T> DC_OF_HASH(tuple<T>);TE <TY T,TY U> DC_OF_HASH(pair<T,U>);TE <TY T,TY U> DC_OF_HASH(tuple<T,U>);TE <TY T,TY U,TY V> DC_OF_HASH(tuple<T,U,V>);TE <TY T,TY U,TY V,TY W> DC_OF_HASH(tuple<T,U,V,W>); TE <TY T> IN size_t hash<tuple<T>>::OP()(CO tuple<T>& n)CO{ST CO hash<T> h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE <TY T,TY U,TY V> IN size_t hash<tuple<T,U,V>>::OP()(CO tuple<T,U,V>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<V> h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE <TY T,TY U,TY V,TY W> IN size_t hash<tuple<T,U,V,W>>::OP()(CO tuple<T,U,V,W>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<pair<V,W>> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} /* Vector (3KB)*/ #define DC_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg) #define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_COUT_FOR_VE(multiset);IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);} #define DF_OF_SCALAR_ACTION_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;} #define DF_OF_AR_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a0,CO V<T>& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE <TY T,TY U> IN V<T> OP OPR(V<T> a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE <TY T> IN V<T>& OP INCR(V<T>& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_ARS_FOR_VE(V)TE <TY T> IN V<T>& OP+=(V<T>& a,CO T& t){a.push_back(t);RE a;}TE <TY T> IN V<T>& OP<<=(V<T>& a,CO T& t){RE a += t;}TE <TY T> IN V<T> OP<<(V<T> a,CO T& t){RE MO(a +~ t);}DF_OF_SCALAR_ACTION_FOR_VE(V,*);DF_OF_SCALAR_ACTION_FOR_VE(V,/);DF_OF_SCALAR_ACTION_FOR_VE(V,%);DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE <TY T> IN V<T> OP*(CO T& scalar,V<T> v){for(auto& t:v){t *= scalar;}RE MO(v);}TE <TY T> IN T pop(V<T>& a){AS(!a.empty());T AN = MO(a.back());a.pop_back();RE AN;} DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);TE <TY V> IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE <TY T> IN VE<T> id(CRI SZ){VE<T> AN(SZ);for(int i = 0;i < SZ;i++){AN[i]= i;}RE AN;}TE <TY T> IN VO Sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE <TY T0,TY T1> IN VO Sort(VE<T0>& a,VE<T1>& b,CO bool& reversed = false){CO int SZ = a.SZ();AS(SZ == int(b.SZ()));VE<pair<T0,T1>> v(SZ);for(int i = 0;i < SZ;i++){v[i]={MO(a[i]),MO(b[i])};}Sort(v,reversed);for(int i = 0;i < SZ;i++){a[i]= MO(v[i].first);b[i]= MO(v[i].second);}}TE <TY T> IN VE<int> IndexSort(CO VE<T>& a,CO bool& reversed = false){auto index = id<int>(a.SZ());if(reversed){sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[j]< a[i];});}else{sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[i]< a[j];});}RE index;}TE <TY V> IN int len(CO V& a){RE a.SZ();} /* Map (1KB)*/ #define DF_OF_AR_FOR_MAP(MAP,OPR)TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a,CO pair<T,U>& v){a[v.first]OPR ## = v.second;RE a;}TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a0,CO MAP<T,U>& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE <TY T,TY U,TY ARG> IN MAP<T,U> OP OPR(MAP<T,U> a,CO ARG& arg){RE MO(a OPR ## = arg);} #define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%); TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>; DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map); /* StdStream (2KB)*/ TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCout(os << forward<Arg1>(arg1)<< " ",forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY Arg> IN OS& VariadicCoutNonSep(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCoutNonSep(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCoutNonSep(os << forward<Arg1>(arg1),forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY ARRAY> IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,ARRAY&& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;} /* Module (6KB)*/ #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();} TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);}; TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>& AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){} TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;} TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TY MAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMA magma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);}; TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY U,TY MAGMA> IN U RegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} /* Graph (5KB)*/ TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p));}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} /* Grid (3KB)*/ #define SET_GRID H_minus = H - 1;W_minus = W - 1;HW = ll(H)* W #define SET_HW(h,w)H = h;W = w;SET_GRID #define CIN_HW SET(H,W);SET_GRID TE <TY E>CL GridGraph:PU EnumerationGraph<T2<int>,T2<int>(&)(CRI),int(&)(CO T2<int>&),E>{PU:IN GridGraph(E e);};int H,W,H_minus,W_minus;ll HW;VE<string> grid;char walkable = '.';CO string direction="URDL";bool grid_edge_i_plus = true;bool grid_edge_j_plus = true;bool grid_edge_i_minus = true;bool grid_edge_j_minus = true; IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}TE <TY E> IN GridGraph<E>::GridGraph(E e):EnumerationGraph<T2<int>,T2<int>(&)(CRI),int(&)(CO T2<int>&),E>(HW,EnumHW,EnumHW_inv,MO(e)){AS(HW >> 31 == 0 && H * W == HW);}VE<T2<int>> EdgeOnGrid(CO T2<int>& v){VE<T2<int>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(grid_edge_i_minus && i > 0 && grid[i-1][j]== walkable){AN.push_back({i-1,j});}if(grid_edge_i_plus && i+1 < H && grid[i+1][j]== walkable){AN.push_back({i+1,j});}if(grid_edge_j_minus && j > 0 && grid[i][j-1]== walkable){AN.push_back({i,j-1});}if(grid_edge_j_plus && j+1 < W && grid[i][j+1]== walkable){AN.push_back({i,j+1});}}RE AN;}VE<Pair<T2<int>,ll>> WEdgeOnGrid(CO T2<int>& v){VE<Pair<T2<int>,ll>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(grid_edge_i_minus && i>0 && grid[i-1][j]== walkable){AN.push_back({{i-1,j},1});}if(grid_edge_i_plus && i+1 < H && grid[i+1][j]== walkable){AN.push_back({{i+1,j},1});}if(grid_edge_j_minus && j>0 && grid[i][j-1]== walkable){AN.push_back({{i,j-1},1});}if(grid_edge_i_plus && j+1 < W && grid[i][j+1]== walkable){AN.push_back({{i,j+1},1});}}RE AN;}IN VO SetWallStringOnGrid(){grid.resize(H);for(int i = 0;i < H;i++){SET(grid[i]);AS(int(grid[i].SZ())== W);}}IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h,CO bool& xy_axis = false){RE xy_axis?i < k?1:i > k?3:j < h?0:j > h?2:-1:i < k?2:i > k?0:j < h?1:j > h?3:-1;}IN int DirectionNumberOnGrid(CO T2<int>& v,CO T2<int>& w,CO bool& xy_axis = false){auto&[i,j]= v;auto&[k,h]= w;RE DirectionNumberOnGrid(i,j,k,h);}IN int DirectionNumberOnGrid(CRI v,CRI w,CO bool& xy_axis = false){RE DirectionNumberOnGrid(EnumHW(v),EnumHW(w));}IN int DirectionNumberOnGrid(CO char& c){RE c == 'U'?0:c == 'R'?1:c == 'D'?2:c == 'L'?3:-1;}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0 <= n && n < 4);RE n ^ 2;}IN T2<int> DirectionVEOnGrid(CO char& c,CO bool& xy_axis = false){CO int n = DirectionNumberOnGrid(c);AS(n != -1);RE T2<int>{xy_axis?n == 1?1:n == 3?-1:0:n == 0?-1:n == 2?1:0,xy_axis?n == 0?1:n == 2?-1:0:n == 1?1:n == 3?-1:0};} /* ConstexprModulo (7KB)*/ CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE <uint M,TY INT> CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order = M - 1;ST CE int g_order_minus = g_order - 1;}; #define SFINAE_FOR_MOD enable_if_t<is_COructible_v<uint,decay_t<T>>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T,SFINAE_FOR_MOD = nullptr> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);} TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T,SFINAE_FOR_MOD = nullptr> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>& FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;ST IN CE uint GetModulo()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;}; US MP = Mod<P>; TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T,SFINAE_FOR_MOD> CE Mod<M>::Mod(T n)NE:m_n(Residue<M>(MO(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE NonNegativePW(MO(neg?(EX %= COants::g_order)== 0?EX:EX += COants::g_order:EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < M);ST VE<Mod<M>> memory ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(DeRP(M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M));LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN CE uint Mod<M>::GetModulo()NE{RE M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN IS& OP>>(IS& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN OS& OP<<(OS& os,CO Mod<M>& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash<MOD>::OP()(CO MOD& n)CO{ST CO hash<decldecay_t(n.RP())> h;RE h(n.RP());} TE <uint M> DC_OF_HASH(Mod<M>); TE <uint M> DF_OF_HASH_FOR_MOD(Mod<M>); /* Sum (2KB) */ TE <TY T,TE <TY...> TY V,TY OPR> T LeftConnectiveProd(CO V<T>& f,OPR opr){AS(!f.empty());auto IT = f.BE(),EN = f.EN();T AN = *(IT++);WH(IT != EN){AN = opr(MO(AN),*(IT++));}RE AN;}TE <TY T,TE <TY...> TY V> IN T Sum(CO V<T>& f){RE LeftConnectiveProd(f,[](T t0,CO T& t1){RE MO(t0 += t1);});}TE <TY T,TE <TY...> TY V> IN T Prod(CO V<T>& f){RE LeftConnectiveProd(f,[](T t0,CO T& t1){RE MO(t0 *= t1);});}TE <TY T,TE <TY...> TY V> IN T Max(CO V<T>& f){RE *max_element(f.BE(),f.EN());}TE <TY T,TE <TY...> TY V> IN T Min(CO V<T>& f){RE *min_element(f.BE(),f.EN());}TE <TY T,TY U> IN T SetMax(T& n,CO U& m){RE n < m?n = m:n;}TE <TY T,TY U> IN T SetMin(T& n,CO U& m){RE n > m?n = m:n;}TE <TY T,TY UINT>T Power(T t,UINT EX,T init = 1){(EX & 1)== 1?init *= t:init;EX >>= 1;WH(EX > 0){t = Square(t);(EX & 1)== 1?init *= t:init;EX >>= 1;}RE MO(init);}TE <TY INT> IN INT ArithmeticProgressionSum(CO INT& l,INT r,CO INT& d = 1){AS(l <= r);CO INT c =(r - l)/ d;RE(c & 1)== 0?(c + 1)*(l + d *(c >> 1)):((c + 1)>> 1)*((l << 1)+ d * c);}TE <TY INT> IN INT ArithmeticProgressionSum(CO INT& r){RE ArithmeticProgressionSum(INT{},r);}TE <TY T,TY UINT> IN T GeometricProgressionSum(T rate,UINT EX_max,CO T& init = 1){T rate_minus = rate - 1;RE rate_minus == 0?init * ++EX_max:(Power(MO(rate),MO(++EX_max))- 1)/ MO(rate_minus)* init;}TE <TY T,TY UINT>T GeometricProgressionLinearCombinationSum(VE<T> rate,VE<UINT> EX_max,CO VE<T>& init){CO int SZ = init.SZ();AS(int(rate.SZ())== SZ && int(EX_max.SZ())== SZ);T AN{};for(int i = 0;i < SZ;i++){AN += GeometricProgressionSum(MO(rate[i]),MO(EX_max[i]),init[i]);}RE AN;} /* Loop (1KB)*/ TE <TY INT> bool NextLoop(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]< upper_limit[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoop(CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){RE NextLoop(index.SZ(),lower_bound,upper_limit,index);}TE <TY INT> bool NextLoopEq(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]<= upper_bound[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoopEq(CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){RE NextLoopEq(index.SZ(),lower_bound,upper_bound,index);} /* string (1KB)*/ TE <TY INT> IN char IntToChar(CO INT& i,CO char& c = 'a'){RE c + i;}TE <TY INT> IN INT CharToInt(CO char& i){RE i -(i < 'a'?'A':'a');}TE <TY INT>string ArrayToString(CO VE<INT>& A,CO char& c = 'a'){CO int N = A.SZ();string S(N,c);for(int i = 0;i < N;i++){S[i]= IntToChar<INT>(A[i],c);}RE S;}TE <TY INT>VE<INT> StringToArray(CO string& S){CO int N = S.SZ();VE<int> A(N);for(int i = 0;i < N;i++){A[i]= CharToInt<INT>(S[i]);}RE A;} #endif /* AAA 常設ライブラリは以上に挿入する。*/ #define INCLUDE_LIBRARY #include __FILE__ #endif /* INCLUDE_LIBRARY */ #endif /* INCLUDE_SUB */ #endif /* INCLUDE_MAIN */