結果
| 問題 |
No.3174 勝ち残りじゃんけん
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2025-03-02 02:44:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 14 ms / 2,000 ms |
| コード長 | 17,342 bytes |
| コンパイル時間 | 4,837 ms |
| コンパイル使用メモリ | 275,908 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2025-03-02 02:44:30 |
| 合計ジャッジ時間 | 6,160 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template <int m> istream& operator>>(istream& is, static_modint<m>& a) {long long x; is >> x; a = x; return is;}
template <int m> istream& operator>>(istream& is, dynamic_modint<m>& a) {long long x; is >> x; a = x; return is;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;}
template<typename T> ostream& operator<<(ostream& os, const set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename T> ostream& operator<<(ostream& os, const unordered_set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename S, auto op, auto e> ostream& operator<<(ostream& os, const atcoder::segtree<S, op, e>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;}
template<typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id> ostream& operator<<(ostream& os, const atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;}
template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}
using mint = modint998244353;
// combination mod prime
// https://youtu.be/8uowVvQ_-Mo?t=6002
// https://youtu.be/Tgd_zLfRZOQ?t=9928
struct modinv {
int n; vector<mint> d;
modinv(): n(2), d({0,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} invs;
struct modfact {
int n; vector<mint> d;
modfact(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*n), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} facts;
struct modfactinv {
int n; vector<mint> d;
modfactinv(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*invs(n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} ifacts;
mint comb(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(k)*ifacts(n-k);
}
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
template<class...Args> FormalPowerSeries(Args...args): vector<T>(args...) {}
FormalPowerSeries(initializer_list<T> a): vector<T>(a.begin(),a.end()) {}
using MULT = function< P(P, P) >;
static MULT &get_mult() {
static MULT mult = [&](P a, P b){
P res(convolution(a, b));
return res;
};
return mult;
}
static void set_fft(MULT f) {
get_mult() = f;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < int(r.size()); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < int(r.size()); i++) (*this)[i] -= r[i];
// shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
// shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < int(this->size()); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if((int)this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
/*
P inv_special(int k, int deg = -1) const {
// ret = 0 + x/f_1
P ret({0, T(k)});
for(int i = 1; (i >> 1) < deg; i <<= 1) {
// F(G_i(x))
P fg = (((-ret.pow(k, i << 1) + T(1)) * ret).pre(i << 1) * (-ret + T(1)).inv(i << 1)).pre(i << 1) * T(k).inv();
// G_(i + 1)(x) = G_i(x) - (F(G_i(x)) - x) / F'(G_i(x))
// G_(i + 1)(x) = G_i(x) - (F(G_i(x)) - x) / ((d/dx)F(G_i(x)) / (d/dx)G_i(x))
ret = (ret - ((fg - P{0, 1}) * ret.diff()).pre(i << 1) * (fg.diff()).inv(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
*/
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == T(1));
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
if(int(ret.size()) < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret({T(1)});
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(int k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P C(*this * rev);
P D(n - i);
for(int j = i; j < n; j++) D[j - i] = C[j];
D = (D.log(deg) * T(k)).exp() * (*this)[i].pow(k);
P E(deg);
if(i * k > deg) return E;
auto S = i * k;
for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];
return E;
}
}
return *this;
}
P taylor_shift(T x) const {
const int n = (int) this->size();
P p(n), q(n);
for(int i = 0; i < n; i++) p[i] = facts(i) * (*this)[i];
for(int i = 0; i < n; i++) q[i] = ifacts(n - 1 - i) * x.pow(n - 1 - i);
p *= q;
p = p >> (n - 1);
for(int i = 0; i < n; i++) p[i] *= ifacts(i);
return p;
}
T get(int idx){
assert(idx >= 0);
if(idx < int(this->size())) return (*this)[idx];
else return T(0);
}
void set(int idx, T x){
assert(idx >= 0);
if(idx < int(this->size())) (*this)[idx] = x;
else{
this->resize(idx + 1);
T(0);
}
return;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
};
template<typename T>
T BostanMori(FormalPowerSeries<T> P, FormalPowerSeries<T> Q, ll n){
assert(P.size() == Q.size());
if(n == 0) return P[0] / Q[0];
const int k = P.size();
FormalPowerSeries<T> R = Q;
rep(i, k) if(i % 2 == 1) R[i] *= (T)-1;
P *= R;
Q *= R;
FormalPowerSeries<T> U(k), V(k);
if(n % 2 == 1) rep(i, k - 1) U[i] = P[2 * i + 1];
else rep(i, k) U[i] = P[2 * i];
rep(i, k) V[i] = Q[2 * i];
return BostanMori(U, V, n / 2);
}
// C = A * B in the full_relaxed way
// c_i = \sigma_{j = 0}^{i} a_{j} b_{i - j}
// Postulate: at the point of i, all of the a_j, b_j (0 <= j <= i) are known
// O(N(longN)^2)
// 5e5 * 5e5 -> 3300 ms
// https://judge.yosupo.jp/submission/167521
template<typename T>
void convolution_online(FormalPowerSeries<T>& a, FormalPowerSeries<T>& b, FormalPowerSeries<T>& c, int idx){
assert(int(c.size()) >= int(a.size()) + int(b.size()) - 1);
int two = 1;
rep(_, 30){
if(idx == 0 and two >= 2) break;
if(!(idx % two == max(0, two - 2))) break;
{
FormalPowerSeries<T> a1(two), b1(two), c1;
rep(i, two){a1[i] = a[(two - 1) + i]; b1[i] = b[idx - (two - 1) + i];}
c1 = a1 * b1;
rep(i, two * 2 - 1) c[idx + i] += c1[i];
}
if(idx == (two - 1) * 2) break;
{
FormalPowerSeries<T> a2(two), b2(two), c2;
rep(i, two){a2[i] = a[idx - (two - 1) + i]; b2[i] = b[(two - 1) + i];}
c2 = a2 * b2;
rep(i, two * 2 - 1) c[idx + i] += c2[i];
}
two *= 2;
}
}
namespace sparse{
// f^k (mod x^n)for sparse FPS f
// O(N * M) (M is for # of terms of f)
// Requirement : f0 = 1
vector<mint> pow(vector<pair<int, mint>> f, int N, mint k){
assert(int(f.size()) > 0);
assert(f[0].first == 0);
assert(f[0].second == (mint)1);
vector<pair<int, mint>> f_prime;
for(auto [n, c] : f) if(n > 0) f_prime.emplace_back(n - 1, c * n);
vector<mint> F(N);
vector<mint> F_prime(N);
F[0] = 1;
rep(n, N - 1){
mint res = 0;
for(auto [m, c] : f){
if(m == 0) continue;
if(m > n) break;
res -= c * F_prime[n - m];
}
for(auto [m, c] : f_prime){
if(m > n) break;
res += k * c * F[n - m];
}
F_prime[n] = res;
F[n + 1] = res / (n + 1);
}
return F;
}
// exp(f) (mod x^n)for sparse FPS f
// O(N * M) (M is for # of terms of f)
// Requirement : f0 = 0
vector<mint> exp(vector<pair<int, mint>> f, int N){
assert(int(f.size()) > 0);
assert(f[0].first > 0 or f[0].second == 0);
vector<pair<int, mint>> f_prime;
for(auto [n, c] : f) if(n > 0) f_prime.emplace_back(n - 1, c * n);
vector<mint> F(N);
vector<mint> F_prime(N);
F[0] = 1;
rep(n, N - 1){
mint res = 0;
for(auto [m, c] : f_prime){
if(m > n) break;
res += c * F[n - m];
}
F_prime[n] = res;
F[n + 1] = res / (n + 1);
}
return F;
}
// g / f (mod x^n for sparse FPS f and not sparse FPS g
// O(N * M) (M is for # of terms of f)
// Requirement : f0 = 1
vector<mint> quotient(vector<mint> g, vector<pair<int, mint>> f, int N){
assert(int(g.size()) == N);
assert(int(f.size()) > 0);
assert(f[0].first == 0);
assert(f[0].second == (mint)1);
vector<mint> F(N);
F[0] = g[0];
for(int n = 1; n < N; n++){
mint res = g[n];
for(auto [m, c] : f){
if(m == 0) continue;
if(m > n) break;
res -= c * F[n - m];
}
F[n] = res;
}
return F;
}
// log f (mod x^n) for sparse FPS f
// O(N * M) (M is for # of terms of f)
// Requirement : f0 = 1
vector<mint> log(vector<pair<int, mint>> f, int N){
assert(int(f.size()) > 0);
assert(f[0].first == 0);
assert(f[0].second == (mint)1);
vector<mint> f_prime(N);
for(auto [n, c] : f){
if(n == 0) continue;
f_prime[n - 1] = c * n;
}
vector<mint> F_prime = quotient(f_prime, f, N);
vector<mint> F(N);
rep(n, N - 1) F[n + 1] = F_prime[n] / (n + 1);
return F;
}
}
// https://nyaannyaan.github.io/library/fps/berlekamp-massey.hpp
// find series c such that a_n = c_1 a_(n-1) + .. + c_k a_(n-k)
// need at least 2 * k terms
template <typename T>
vector<T> BerlekampMassey(const vector<T> &s) {
const int N = (int)s.size();
vector<T> b, c;
b.reserve(N + 1);
c.reserve(N + 1);
b.push_back(T(1));
c.push_back(T(1));
T y = T(1);
for (int ed = 1; ed <= N; ed++) {
int l = int(c.size()), m = int(b.size());
T x = 0;
for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
b.emplace_back(T(0));
m++;
if (x == T(0)) continue;
T freq = x / y;
if (l < m) {
auto tmp = c;
c.insert(begin(c), m - l, T(0));
for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
b = tmp;
y = x;
} else {
for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
}
}
reverse(begin(c), end(c));
return c;
}
template <typename T>
T LinearRecurrence(const FormalPowerSeries<T>& s, long long n){
FormalPowerSeries<T> c = BerlekampMassey(s);
auto t = c.size();
FormalPowerSeries<T> P = c * s;
P = FormalPowerSeries<T>(P.begin(), P.begin() + t);
P[t - 1] = 0;
return BostanMori(P, c, n);
};
// Thanks for maspy-san's submission
// https://judge.yosupo.jp/submission/197702
template <typename T = mint>
vector<vector<T>> convolution2d(vector<vector<T>>& f, vector<vector<T>>& g) {
auto shape = [&](vector<vector<T>>& f) -> pair<int, int> {
int H = len(f);
int W = (H == 0 ? 0 : len(f[0]));
return {H, W};
};
auto [H1, W1] = shape(f);
auto [H2, W2] = shape(g);
int H = H1 + H2 - 1;
int W = W1 + W2 - 1;
FormalPowerSeries<T> ff(H1 * W);
FormalPowerSeries<T> gg(H2 * W);
for(int x = 0; x < H1; x++) for(int y = 0; y < W1; y++) ff[W * x + y] = f[x][y];
for(int x = 0; x < H2; x++) for(int y = 0; y < W2; y++) gg[W * x + y] = g[x][y];
auto hh = convolution(ff, gg);
vector<vector<T>> h(H, vector<T>(W));
for(int x = 0; x < H; x++) for(int y = 0; y < W; y++) h[x][y] = hh[W * x + y];
return h;
}
template<typename T>
struct Merger{
int n;
using P = FormalPowerSeries<T>;
using Comp = std::function<bool(const P&, const P&)>;
Comp comp = [](const P& a, const P& b){return a.size() > b.size();};
priority_queue<P, vector<P>, Comp> pq;
Merger(int n = -1) : n(n), pq(comp){
pq.push(P{1});
}
void add(P r){
pq.push(r);
}
P get(){
while(pq.size() > 1){
auto f = pq.top(); pq.pop();
auto g = pq.top(); pq.pop();
f *= g;
if(n != -1) if(int(f.size()) > n) f.resize(n + 1);
pq.push(f);
}
P res = pq.top();
return res;
}
};
void infer(mint a){
if(a == 0){cout << "0/1 "; return;}
int p = a.mod();
long long u0 = 0, v0 = 1, w0 = a.val() * u0 + p * v0;
long long u1 = 1, v1 = 0, w1 = a.val() * u1 + p * v1;
while (w0*w0 >= p) {
long long q = w0 / w1;
u0 -= q * u1; v0 -= q * v1; w0 -= q * w1;
u0 ^= u1; u1 ^= u0; u0 ^= u1;
v0 ^= v1; v1 ^= v0; v0 ^= v1;
w0 ^= w1; w1 ^= w0; w0 ^= w1;
}
if(u0 < 0){cout << '-'; u0 = abs(u0);}
cout << w0 << '/' << u0 << ' ';
}
template<typename T>
void infer(vector<T> v){for(auto& a : v) infer(a); cout << "\n";}
int main(){
int n;
cin >> n;
using fps = FormalPowerSeries<mint>;
fps f(n);
fps g(n);
fps h(2 * n + 5);
f[0] = facts(n) * (mint(2).pow(n) - 2).inv();
rep(i, n) g[i] = ifacts(i + 1);
rep(i, n){
convolution_online(f, g, h, i);
if(i <= n - 3){
f[i + 1] = h[i] * (mint(2).pow(n - (i + 1)) - 2).inv();
}
}
vector<mint> p(n);
rep(i, n){
p[i] = f[i] * ifacts(n - i) * (mint(2).pow(n - i) - 2);
}
reverse(p.begin(), p.end());
for(int i = 1; i < n; i++){
p[i] *= mint(3).pow(i + 1) * (mint(2).pow(i + 1) - 2).inv() / 3;
}
vector<mint> ans(n);
for(int i = n - 2; i >= 0; i--){
ans[i] = ans[i + 1] + p[i + 1];
}
cout << ans;
return 0;
}