結果

問題 No.889 素数!
ユーザー MMRZ
提出日時 2025-03-03 13:02:18
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 4,059 bytes
コンパイル時間 3,204 ms
コンパイル使用メモリ 279,608 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2025-03-03 13:02:24
合計ジャッジ時間 5,283 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 61
権限があれば一括ダウンロードができます

ソースコード

diff #

# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq)           (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw)        (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe)         transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr)         transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu)         for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo)        for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x)                ((ll)(x).size())
# define bit(n)               (1LL << (n))
# define pb push_back
# define eb emplace_back
# define exists(c, e)         ((c).find(e) != (c).end())

struct INIT{
	INIT(){
		std::ios::sync_with_stdio(false);
		std::cin.tie(0);
		cout << fixed << setprecision(20);
	}
}INIT;

namespace mmrz {
	void solve();
}

int main(){
	mmrz::solve();
}
#define debug(...) (static_cast<void>(0))

using namespace mmrz;

__int128_t __power(__int128_t n, __int128_t k, __int128_t m) {
    n %= m;
	__int128_t ret = 1;
    while(k > 0){
        if(k & 1)ret = ret * n % m;
        n = __int128_t(n) * n % m;
        k >>= 1;
    }
    return ret % m;
}

bool is_prime(long long n){
    if(n <= 1)return false;
    if(n == 2 || n == 3 || n == 5)return true;
    if(n % 2 == 0)return false;
    if(n % 3 == 0)return false;
    if(n % 5 == 0)return false;

    vector<long long> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};

    long long s = 0, d = n - 1;
    while(d % 2 == 0){
        s++;
        d >>= 1;
    }

    for (auto a : A){
        if(a % n == 0)return true;
        long long t, x = __power(a, d, n);
        if(x != 1){
            for(t = 0;t < s;t++){
                if(x == n - 1)break;
                x = __int128_t(x) * x % n;
            }
            if(t == s)return false;
        }
    }
    return true;
}

unsigned long long iroot(unsigned long long n, int k=2){
	constexpr unsigned long long LIM = -1;
	if(n <= 1 || k == 1){
		return n;
	}
	if(k >= 64){
		return 1;
	}
	if(k == 2){
		return sqrtl(n);
	}

	if(n == LIM)n--;

	auto safe_mul = [&](unsigned long long &x, unsigned long long &y) -> void {
		if(x <= LIM / y){
			x *= y;
		}else{
			x = LIM;
		}
	};

	auto power = [&](unsigned long long a, int b) -> unsigned long long {
		unsigned long long ret = 1;
		while(b){
			if(b & 1)safe_mul(ret, a);
			safe_mul(a, a);
			b >>= 1;
		}
		return ret;
	};

	unsigned long long ret = (k == 3 ? cbrt(n)-1 : pow(n, nextafter(1.0/double(k), 0.0)));
	while(power(ret+1, k) <= n)ret++;
	return ret;
}

void SOLVE(){
	int n;
	cin >> n;
	if(is_prime(n))cout << "Sosu!\n";
	else if(n >= 2 && iroot(n, 2)*iroot(n, 2) == n)cout << "Heihosu!\n";
	else if(n >= 2 && iroot(n, 3)*iroot(n, 3)*iroot(n, 3) == n)cout << "Ripposu!\n";
	else if(n == 6 || n == 28)cout << "Kanzensu!\n";
	else cout << n << '\n';
}

void mmrz::solve(){
	int t = 1;
	//cin >> t;
	while(t--)SOLVE();
}
0