結果
| 問題 |
No.3044 よくあるカエルさん
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-04 05:55:14 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 141 ms / 2,000 ms |
| コード長 | 6,012 bytes |
| コンパイル時間 | 3,995 ms |
| コンパイル使用メモリ | 285,808 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2025-03-04 05:55:20 |
| 合計ジャッジ時間 | 5,669 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 20 |
ソースコード
# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define eb emplace_back
# define exists(c, e) ((c).find(e) != (c).end())
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
namespace mmrz {
void solve();
}
int main(){
mmrz::solve();
}
#define debug(...) (static_cast<void>(0))
using namespace mmrz;
template<typename T>
struct matrix {
vector<vector<T>> a;
matrix(){}
matrix(int n, int m) : a(n, vector<T>(m, 0)){}
matrix(int n) : a(n, vector<T>(n, 0)){}
size_t height() const {return a.size(); }
size_t width() const {return a[0].size(); }
const vector<T> &operator[](int k) const {return a.at(k); }
vector<T> &operator[](int k) {return a.at(k); }
static matrix I(size_t n){
matrix mat(n);
for(size_t i = 0;i < n;i++){
mat[i][i] = 1;
}
return mat;
}
matrix &operator+=(const matrix &b){
size_t n = height(), m = width();
assert(n == b.height() && m == b.width());
for(size_t i = 0;i < n;i++){
for(size_t j = 0;j < m;j++){
(*this)[i][j] += b[i][j];
}
}
return *this;
}
matrix &operator-=(const matrix &b){
size_t n = height(), m = width();
assert(n == b.height() && m == b.width());
for(size_t i = 0;i < n;i++){
for(size_t j = 0;j < m;j++){
(*this)[i][j] -= b[i][j];
}
}
return *this;
}
matrix &operator*=(const matrix &b){
size_t n = height(), m = b.width(), p = width();
assert(p == b.height());
matrix c(n, m);
for(size_t i = 0;i < n;i++){
for(size_t k = 0;k < p;k++){
for(size_t j = 0;j < m;j++){
c[i][j] += (*this)[i][k] * b[k][j];
}
}
}
a.swap(c.a);
return *this;
}
matrix &operator*=(const T &x){
size_t n = height(), m = width();
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
(*this)[i][j] *= x;
}
}
return *this;
}
matrix operator+(const matrix &b) const {return matrix(*this) += b; }
matrix operator-(const matrix &b) const {return matrix(*this) -= b; }
matrix operator*(const matrix &b) const {return matrix(*this) *= b; }
matrix operator*(const T &x) const {return matrix(*this) *= x; }
};
template<typename T>
matrix<T> matrix_power(matrix<T> a, long long k){
assert(a.height() == a.width());
matrix<T> ret = matrix<T>::I(a.height());
while(k > 0){
if(k & 1)ret *= a;
a = a*a;
k >>= 1;
}
return ret;
}
template <std::uint_fast64_t Modulus> class modint {
using u64 = std::uint_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
friend std::ostream& operator<<(std::ostream& os, const modint& rhs) {
os << rhs.a;
return os;
}
};
using mint = modint<998244353>;
void SOLVE(){
int n, t;
int k, l;
cin >> n >> t >> k >> l;
matrix<mint> mat(t);
mint a = mint(k-1)/mint(6);
mint b = mint(l-k)/mint(6);
mint c = mint(7-l)/mint(6);
mat[0][0] = a;
mat[0][1] = b;
mat[0][t-1] = c;
rep(i, t-1)mat[i+1][i] = 1;
mat = matrix_power(mat, n-1);
matrix<mint> iv(t, 1);
auto f = [&](int x){
return t-x-1;
};
iv[f(0)][0] = 1;
rep(i, t){
if(i+1 < t)iv[f(i+1)][0] += iv[f(i)][0]*a;
if(i+2 < t)iv[f(i+2)][0] += iv[f(i)][0]*b;
}
matrix<mint> ans = mat*iv;
cout << ans[f(0)][0] << '\n';
}
void mmrz::solve(){
int t = 1;
//cin >> t;
while(t--)SOLVE();
}