結果
問題 |
No.3044 よくあるカエルさん
|
ユーザー |
|
提出日時 | 2025-03-04 05:55:14 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 141 ms / 2,000 ms |
コード長 | 6,012 bytes |
コンパイル時間 | 3,995 ms |
コンパイル使用メモリ | 285,808 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2025-03-04 05:55:20 |
合計ジャッジ時間 | 5,669 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 20 |
ソースコード
# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define eb emplace_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; template<typename T> struct matrix { vector<vector<T>> a; matrix(){} matrix(int n, int m) : a(n, vector<T>(m, 0)){} matrix(int n) : a(n, vector<T>(n, 0)){} size_t height() const {return a.size(); } size_t width() const {return a[0].size(); } const vector<T> &operator[](int k) const {return a.at(k); } vector<T> &operator[](int k) {return a.at(k); } static matrix I(size_t n){ matrix mat(n); for(size_t i = 0;i < n;i++){ mat[i][i] = 1; } return mat; } matrix &operator+=(const matrix &b){ size_t n = height(), m = width(); assert(n == b.height() && m == b.width()); for(size_t i = 0;i < n;i++){ for(size_t j = 0;j < m;j++){ (*this)[i][j] += b[i][j]; } } return *this; } matrix &operator-=(const matrix &b){ size_t n = height(), m = width(); assert(n == b.height() && m == b.width()); for(size_t i = 0;i < n;i++){ for(size_t j = 0;j < m;j++){ (*this)[i][j] -= b[i][j]; } } return *this; } matrix &operator*=(const matrix &b){ size_t n = height(), m = b.width(), p = width(); assert(p == b.height()); matrix c(n, m); for(size_t i = 0;i < n;i++){ for(size_t k = 0;k < p;k++){ for(size_t j = 0;j < m;j++){ c[i][j] += (*this)[i][k] * b[k][j]; } } } a.swap(c.a); return *this; } matrix &operator*=(const T &x){ size_t n = height(), m = width(); for(int i = 0;i < n;i++){ for(int j = 0;j < m;j++){ (*this)[i][j] *= x; } } return *this; } matrix operator+(const matrix &b) const {return matrix(*this) += b; } matrix operator-(const matrix &b) const {return matrix(*this) -= b; } matrix operator*(const matrix &b) const {return matrix(*this) *= b; } matrix operator*(const T &x) const {return matrix(*this) *= x; } }; template<typename T> matrix<T> matrix_power(matrix<T> a, long long k){ assert(a.height() == a.width()); matrix<T> ret = matrix<T>::I(a.height()); while(k > 0){ if(k & 1)ret *= a; a = a*a; k >>= 1; } return ret; } template <std::uint_fast64_t Modulus> class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs.a; return os; } }; using mint = modint<998244353>; void SOLVE(){ int n, t; int k, l; cin >> n >> t >> k >> l; matrix<mint> mat(t); mint a = mint(k-1)/mint(6); mint b = mint(l-k)/mint(6); mint c = mint(7-l)/mint(6); mat[0][0] = a; mat[0][1] = b; mat[0][t-1] = c; rep(i, t-1)mat[i+1][i] = 1; mat = matrix_power(mat, n-1); matrix<mint> iv(t, 1); auto f = [&](int x){ return t-x-1; }; iv[f(0)][0] = 1; rep(i, t){ if(i+1 < t)iv[f(i+1)][0] += iv[f(i)][0]*a; if(i+2 < t)iv[f(i+2)][0] += iv[f(i)][0]*b; } matrix<mint> ans = mat*iv; cout << ans[f(0)][0] << '\n'; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }