結果
| 問題 |
No.3052 Increasing Sliding Window Minimum
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2025-03-07 22:34:39 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,563 bytes |
| コンパイル時間 | 430 ms |
| コンパイル使用メモリ | 82,664 KB |
| 実行使用メモリ | 277,000 KB |
| 最終ジャッジ日時 | 2025-03-07 22:35:03 |
| 合計ジャッジ時間 | 24,201 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 8 WA * 34 |
ソースコード
mod = 998244353
n = 20000
inv = [1 for j in range(n + 1)]
for a in range(2, n + 1):
# ax + py = 1 <=> rx + p(-x - qy) = -q => x = -(inv[r]) * (p // a) (r = p % a)
res = (mod - inv[mod % a]) * (mod // a)
inv[a] = res % mod
def mod_inv(a, mod = 998244353):
if mod == 1:
return 0
a %= mod
b, s, t = mod, 1, 0
while True:
if a == 1:
return s
t -= (b // a) * s
b %= a
if b == 1:
return t + mod
s -= (a // b) * t
a %= b
fact = [1 for i in range(n + 1)]
for i in range(1, n + 1):
fact[i] = fact[i - 1] * i % mod
fact_inv = [1 for i in range(n + 1)]
fact_inv[-1] = pow(fact[-1], mod - 2, mod)
for i in range(n, 0, -1):
fact_inv[i - 1] = fact_inv[i] * i % mod
for i in range(n):
fact.append(0)
fact_inv.append(0)
def solve():
n = int(input())
A = list(map(int, input().split()))
dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]
dp[0][0] = 1
appear = [0 for _ in range(n + 5)]
for i in range(n):
appear[A[i]] = 1
for i in range(n):
p = A[i]
q = A[i - 1]
if p == -1:
f = [dp[i][j] * fact[i - j] % mod for j in range(n + 1)]
for k in range(1, i + 2):
f[k] = (f[k] + f[k - 1]) % mod
if appear[k]:
continue
dp[i + 1][k] = f[k - 1] * fact_inv[i + 1 - k] % mod
if i == 0:
continue
if q == -1:
f = [dp[i - 1][j] * fact[i - 1 - j] % mod for j in range(n + 1)]
for k in range(1, i + 2):
f[k] = (f[k] + f[k - 1]) % mod
if appear[k]:
continue
dp[i + 1][k] = (dp[i + 1][k] + f[k - 1] * fact_inv[i - k]) % mod
else:
f = [dp[i - 1][j] * fact[i - 1 - j] % mod for j in range(n + 1)]
for k in range(1, min(i + 1, q - 1) + 1):
f[k] = (f[k] + f[k - 1]) % mod
if appear[k]:
continue
dp[i + 1][k] = (dp[i + 1][k] + f[k - 1] * fact_inv[i - k]) % mod
else:
f = [dp[i][j] * fact[i - j] % mod for j in range(n + 1)]
for k in range(1, i + 2):
f[k] = (f[k] + f[k - 1]) % mod
dp[i + 1][p] = f[p - 1] * fact_inv[i + 1 - p] % mod
if i == 0:
continue
if q != -1:
if q < p:
continue
f = [dp[i - 1][j] * fact[i - 1 - j] % mod for j in range(n + 1)]
for k in range(1, i + 2):
f[k] = (f[k] + f[k - 1]) % mod
dp[i + 1][p] = (dp[i + 1][p] + f[p - 1] * fact_inv[i - p]) % mod
ans = 0
for k in range(1, n + 1):
ans = (ans + dp[n][k] * fact[n - k]) % mod
print(ans)
return
for _ in range(int(input())):
solve()
PNJ