結果
問題 |
No.3047 Verification of Sorting Network
|
ユーザー |
👑 |
提出日時 | 2025-03-08 18:43:41 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 5,373 bytes |
コンパイル時間 | 482 ms |
コンパイル使用メモリ | 82,396 KB |
実行使用メモリ | 178,580 KB |
最終ジャッジ日時 | 2025-03-08 18:44:12 |
合計ジャッジ時間 | 29,480 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 RE * 2 |
other | AC * 29 RE * 32 |
ソースコード
""" yukicoder Problem: Verify Sorting Network """ import collections import functools import math import sys SHOW_PROGRESS = True PROGRESS_THRESHOLD = 28 UNLIMITED = True MAX_TESTCASES = 1000 MAX_N = 27 MAX_COST = 1e8 # Golden ratio (1+sqrt(5))/2 ≒ 1.618033988749895 PHI = math.sqrt(1.25) + 0.5 # Golden ratio class IsSortingOk: """is_sorting_network Ok type""" def __init__(self, value: list[bool]): self.value = value def __bool__(self): return True def __str__(self): return 'Yes' def get_data(self): """get data value""" return self.value class IsSortingNg: """is_sorting_network Ng type""" def __init__(self, value: list[bool]): self.value = value def __bool__(self): return False def __str__(self): return 'No' def get_error(self): """get error value""" return self.value def fib1(n: int) -> list[int]: """Generates Fibonacci sequence [1,1,2,3,…,Fib(n+1)].""" return functools.reduce(lambda x, _: x + [sum(x[-2:])], range(n), [1]) def is_sorting_network(n: int, net: list[tuple[int, int]]) -> IsSortingOk | IsSortingNg: """ Checks if the given network is a sorting network. Operates in time complexity O(m * phi**n). phi is the golden ratio 1.618... """ assert 2 <= n # Check the range of 0-indexed inputs assert all(0 <= a < b < n for a, b in net) # Number of comparators m = len(net) # Initial state is all '?' = indeterminate: not determined to be 0 or 1 dict_queue: collections.defaultdict[tuple[int, int], int] = collections.defaultdict(int) dict_queue[((1 << n) - 1, (1 << n) - 1)] = 1 # Record whether the comparator is ever used unused = [] # Record unsorted positions unsorted_i = 0 # Generate Fibonacci sequence fib = fib1(n) # Progress of search branches: from 0 to fib[n] progress = 0 # show_progress show_progress = SHOW_PROGRESS and n >= PROGRESS_THRESHOLD for i, (a, b) in enumerate(net): dict_next: collections.defaultdict[tuple[int, int], int] = collections.defaultdict(int) unused_f = True for (z, o), c in dict_queue.items(): if ((o >> a) & 1) == 0 or ((z >> b) & 1) == 0: dict_next[(z, o)] += c elif ((z >> a) & 1) == 1 and ((o >> b) & 1) == 1: unused_f = False qz, qo, z = z, (o ^ (1 << a) ^ (1 << b)), (z ^ (1 << b)) if (qo & (qz >> 1)) == 0: progress += c else: dict_next[(qz, qo)] += c if (o & (z >> 1)) == 0: progress += c else: dict_next[(z, o)] += c else: unused_f = False xz, xo = (((z >> a) ^ (z >> b)) & 1), (((o >> a) ^ (o >> b)) & 1) z, o = (z ^ ((xz << a) | (xz << b))), (o ^ ((xo << a) | (xo << b))) if (o & (z >> 1)) == 0: progress += c else: dict_next[(z, o)] += c unused.append(unused_f) dict_queue = dict_next if show_progress: percent = i * 100 // m sys.stderr.write(f'{percent}%\r') for (z, o), c in dict_queue: unsorted_i |= (o & (z >> 1)) progress += fib[(z & o).bit_count()] * c if show_progress: sys.stderr.write('\n') # Verify that the number of search branches matches the Fibonacci sequence value assert progress == fib[n] # If there are unsorted branches if unsorted_i != 0: unsorted = [((unsorted_i >> i) & 1) != 0 for i in range(n - 1)] return IsSortingNg(unsorted) # If all branches are sorted return IsSortingOk(unused) def main(): """Input and output processing for test cases""" t = int(sys.stdin.readline()) assert t <= MAX_TESTCASES or UNLIMITED cost = 0 for _ in range(t): n, m = map(int, sys.stdin.readline().split()) assert 2 <= n <= MAX_N or UNLIMITED assert 1 <= m <= n * (n - 1) // 2 or UNLIMITED cost += m * PHI**n # Computational cost of test cases assert cost <= MAX_COST or UNLIMITED # 1-indexed -> 0-indexed a = map(lambda x: int(x) - 1, sys.stdin.readline().split()) b = map(lambda x: int(x) - 1, sys.stdin.readline().split()) cmps: list[tuple[int, int]] = list(zip(a, b)) assert len(cmps) == m assert all(0 <= a < b < n for a, b in cmps) # is_sorting: Check if the given network is a sorting network is_sorting = is_sorting_network(n, cmps) print(is_sorting) # Yes or No if is_sorting: # unused_cmp: Whether the comparator is unused (only if is_sorting=True) unused_cmp = is_sorting.get_data() assert len(unused_cmp) == m print(sum(unused_cmp)) print(*map(lambda e: e[0] + 1, filter(lambda e: e[1], enumerate(unused_cmp)))) else: # unsorted_pos: Positions that may not be sorted (only if is_sorting=False) unsorted_pos = is_sorting.get_error() assert len(unsorted_pos) == n - 1 print(sum(unsorted_pos)) print(*map(lambda e: e[0] + 1, filter(lambda e: e[1], enumerate(unsorted_pos)))) main()