結果
| 問題 |
No.3047 Verification of Sorting Network
|
| ユーザー |
👑 |
| 提出日時 | 2025-03-08 19:55:36 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 949 ms / 2,000 ms |
| コード長 | 4,249 bytes |
| コンパイル時間 | 684 ms |
| コンパイル使用メモリ | 82,360 KB |
| 実行使用メモリ | 140,436 KB |
| 最終ジャッジ日時 | 2025-03-08 19:56:05 |
| 合計ジャッジ時間 | 29,115 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 61 |
ソースコード
"""
yukicoder Problem: Verify Sorting Network
"""
import sys
SHOW_PROGRESS = True
PROGRESS_THRESHOLD = 28
class IsSortingOk:
"""is_sorting_network Ok type"""
def __init__(self, value: list[bool]):
self.value = value
def __bool__(self):
return True
def __str__(self):
return 'Yes'
def get_data(self):
"""get data value"""
return self.value
class IsSortingNg:
"""is_sorting_network Ng type"""
def __init__(self, value: list[bool]):
self.value = value
def __bool__(self):
return False
def __str__(self):
return 'No'
def get_error(self):
"""get error value"""
return self.value
def is_sorting_network(n: int, net: list[tuple[int, int]]) -> IsSortingOk | IsSortingNg:
"""
Checks if the given network is a sorting network.
Operates in time complexity O(m * phi**n). phi is the golden ratio 1.618...
"""
assert 2 <= n
# Check the range of 0-indexed inputs
assert all(0 <= a < b < n for a, b in net)
# Number of comparators
m = len(net)
# Initial state is all '?' = indeterminate: not determined to be 0 or 1
queue: set[tuple[int, int]] = set()
queue.add(((1 << n) - 1, (1 << n) - 1))
# Record whether the comparator is ever used
unused_cmp = []
# Record unsorted positions
unsorted_i = 0
# show_progress
show_progress = SHOW_PROGRESS and n >= PROGRESS_THRESHOLD
for i, (a, b) in enumerate(net):
queue_next: set[tuple[int, int]] = set()
unused_f = True
for (z, o) in queue:
if ((o >> a) & 1) == 0 or ((z >> b) & 1) == 0:
queue_next.add((z, o))
elif ((z >> a) & 1) == 1 and ((o >> b) & 1) == 1:
unused_f = False
qz, qo, z = z, (o ^ (1 << a) ^ (1 << b)), (z ^ (1 << b))
if (qo & (qz >> 1)) != 0:
queue_next.add((qz, qo))
if (o & (z >> 1)) != 0:
queue_next.add((z, o))
else:
unused_f = False
xz, xo = (((z >> a) ^ (z >> b)) & 1), (((o >> a) ^ (o >> b)) & 1)
z, o = (z ^ ((xz << a) | (xz << b))), (o ^ ((xo << a) | (xo << b)))
if (o & (z >> 1)) != 0:
queue_next.add((z, o))
unused_cmp.append(unused_f)
queue = queue_next
if show_progress:
percent = i * 100 // m
sys.stderr.write(f'{percent}%\r')
for z, o in queue:
unsorted_i |= (o & (z >> 1))
if show_progress:
sys.stderr.write('\n')
# Verify that the number of search branches matches the Fibonacci sequence value
# If there are unsorted branches
if unsorted_i != 0:
unsorted_pos = [((unsorted_i >> i) & 1) != 0 for i in range(n - 1)]
return IsSortingNg(unsorted_pos)
# If all branches are sorted
return IsSortingOk(unused_cmp)
def main():
"""Input and output processing for test cases"""
t = int(sys.stdin.readline())
for _ in range(t):
n, m = map(int, sys.stdin.readline().split())
# 1-indexed -> 0-indexed
a = map(lambda x: int(x) - 1, sys.stdin.readline().split())
b = map(lambda x: int(x) - 1, sys.stdin.readline().split())
cmps: list[tuple[int, int]] = list(zip(a, b))
assert len(cmps) == m
assert all(0 <= a < b < n for a, b in cmps)
# is_sorting: Check if the given network is a sorting network
is_sorting = is_sorting_network(n, cmps)
print(is_sorting) # Yes or No
if is_sorting:
# unused_cmp: Whether the comparator is unused (only if is_sorting=True)
unused_cmp = is_sorting.get_data()
assert len(unused_cmp) == m
print(sum(unused_cmp))
print(*map(lambda e: e[0] + 1, filter(lambda e: e[1], enumerate(unused_cmp))))
else:
# unsorted_pos: Positions that may not be sorted (only if is_sorting=False)
unsorted_pos = is_sorting.get_error()
assert len(unsorted_pos) == n - 1
print(sum(unsorted_pos))
print(*map(lambda e: e[0] + 1, filter(lambda e: e[1], enumerate(unsorted_pos))))
main()