結果
| 問題 |
No.2303 Frog on Grid
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-12 02:14:29 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 342 ms / 2,000 ms |
| コード長 | 5,438 bytes |
| コンパイル時間 | 617 ms |
| コンパイル使用メモリ | 82,172 KB |
| 実行使用メモリ | 98,108 KB |
| 最終ジャッジ日時 | 2025-03-12 02:14:36 |
| 合計ジャッジ時間 | 5,984 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
## https://yukicoder.me/problems/no/2952
from collections import deque
MOD = 998244353
class CombinationCalculator:
"""
modを考慮したPermutation, Combinationを計算するためのクラス
"""
def __init__(self, size, mod):
self.mod = mod
self.factorial = [0] * (size + 1)
self.factorial[0] = 1
for i in range(1, size + 1):
self.factorial[i] = (i * self.factorial[i - 1]) % self.mod
self.inv_factorial = [0] * (size + 1)
self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod)
for i in reversed(range(size)):
self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod
def calc_combination(self, n, r):
if n < 0 or n < r or r < 0:
return 0
if r == 0 or n == r:
return 1
ans = self.inv_factorial[n - r] * self.inv_factorial[r]
ans %= self.mod
ans *= self.factorial[n]
ans %= self.mod
return ans
def calc_permutation(self, n, r):
if n < 0 or n < r:
return 0
ans = self.inv_factorial[n - r]
ans *= self.factorial[n]
ans %= self.mod
return ans
class NTT:
def __init__(self):
self._root = self._make_root()
self._invroot = self._make_invroot(self._root)
def _reverse_bits(self, n):
n = (n >> 16) | (n << 16)
n = ((n & 0xff00ff00) >> 8) | ((n & 0x00ff00ff) << 8)
n = ((n & 0xf0f0f0f0) >> 4) | ((n & 0x0f0f0f0f) << 4)
n = ((n & 0xcccccccc) >> 2) | ((n & 0x33333333) << 2)
n = ((n & 0xaaaaaaaa) >> 1) | ((n & 0x55555555) << 1)
return n
def _make_root(self):
# 3はMODの原始根, 119乗するとconvolusion, NTT における「基底」の条件を満たす
r = pow(3, 119, MOD)
return [pow(r, 2 ** i, MOD) for i in range(23, -1, -1)]
def _make_invroot(self, root):
invroot = []
for i in range(len(root)):
invroot.append(pow(root[i], MOD - 2, MOD))
return invroot
def _ntt(self, poly, root, rev, max_l):
n = len(poly)
k = (n - 1).bit_length()
step = (max_l) >> k
for i, j in enumerate(rev[::step]):
if i < j:
poly[i], poly[j] = poly[j], poly[i]
r = 1
for w in root[1:(k + 1)]:
for l in range(0, n, r * 2):
wi = 1
for i in range(r):
a = (poly[l + i + r] * wi) % MOD
a += poly[l + i]
a %= MOD
b = (-poly[l + i + r] * wi) % MOD
b += poly[l + i]
b %= MOD
poly[l + i] = a
poly[l + i + r] = b
wi *= w
wi %= MOD
r <<= 1
def convolution(self, poly_l, poly_r):
# 多項式を畳み込んだ時の次数よりも大きい2の冪の長さを求める
# (NTTの特性上2の冪乗に乗せるため)
len_ans = len(poly_l) + len(poly_r) - 1
if (min(len(poly_l), len(poly_r)) <= 40):
return self._combolution_light(poly_l, poly_r)
# 2の冪の長さを求める
n = 1
max_depth = 0
while n <= len_ans:
n *= 2
max_depth += 1
rev = [self._reverse_bits(i) >> (32- max_depth) for i in range(n)]
new_poly_l = [0] * n
for i in range(len(poly_l)):
new_poly_l[i] = poly_l[i]
new_poly_r = [0] * n
for i in range(len(poly_r)):
new_poly_r[i] = poly_r[i]
# 数論変換
self._ntt(new_poly_l, self._root, rev, n)
self._ntt(new_poly_r, self._root, rev, n)
# 畳み込みは各iを代入した値の積で求められる
d_ans = [0] * n
for i in range(n):
d_ans[i] = (new_poly_l[i] * new_poly_r[i]) % MOD
# 逆数論変換
self._ntt(d_ans, self._invroot, rev, n)
# 最後の定数分割る処理
inv_n = pow(n, MOD - 2, MOD)
poly_ans = [0] * len_ans
for i in range(len_ans):
poly_ans[i] = (d_ans[i] * inv_n) % MOD
return poly_ans
def _combolution_light(self, poly_l, poly_r):
poly_ans = [0] * (len(poly_l) + len(poly_r) - 1)
for i in range(len(poly_l)):
for j in range(len(poly_r)):
poly_ans[i + j] += (poly_l[i] * poly_r[j]) % MOD
poly_ans[i + j] %= MOD
return poly_ans
def main():
H, W = map(int, input().split())
combi = CombinationCalculator(H + W, MOD)
poly_h = []
for h in range(H):
if 2 * h > H:
break
x = combi.calc_combination(H - h, h)
y = combi.inv_factorial[H - h]
poly_h.append((x * y) % MOD)
poly_w = []
for w in range(W):
if 2 * w > W:
break
x = combi.calc_combination(W - w, w)
y = combi.inv_factorial[W - w]
poly_w.append((x * y) % MOD)
ntt =NTT()
poly = ntt.convolution(poly_h, poly_w)
answer = 0
for x in range(len(poly_h) - 1 + len(poly_w) - 1 + 1):
z = (poly[x] * combi.factorial[H + W - x]) % MOD
answer += z
answer %= MOD
print(answer)
if __name__ == "__main__":
main()