結果
問題 |
No.901 K-ary εxtrεεmε
|
ユーザー |
|
提出日時 | 2025-03-12 16:34:45 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 246 ms / 3,000 ms |
コード長 | 30,807 bytes |
コンパイル時間 | 6,221 ms |
コンパイル使用メモリ | 357,088 KB |
実行使用メモリ | 23,964 KB |
最終ジャッジ日時 | 2025-03-12 16:35:01 |
合計ジャッジ時間 | 14,333 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 29 |
ソースコード
// competitive-verifier: PROBLEM #include <iostream> #include <vector> /** * @brief 重み付きグラフ * * @tparam T 辺の重みの型 */ template <class T> struct Graph { private: struct _edge { constexpr _edge() : _from(), _to(), _weight() {} constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {} constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr T weight() const { return _weight; } private: int _from, _to; T _weight; }; public: using edge_type = typename Graph<T>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); } void add_edges(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); edges[to].emplace_back(to, from, weight); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edge(from - base, to - base, weight); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edges(from - base, to - base, weight); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; template <> struct Graph<void> { private: struct _edge { constexpr _edge() : _from(), _to() {} constexpr _edge(int from, int to) : _from(from), _to(to) {} constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr int weight() const { return 1; } constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } private: int _from, _to; }; public: using edge_type = typename Graph<void>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to) { edges[from].emplace_back(from, to); } void add_edges(int from, int to) { edges[from].emplace_back(from, to); edges[to].emplace_back(to, from); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edge(from - base, to - base); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edges(from - base, to - base); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; #include <cassert> namespace internal { // @return same with std::bit::bit_ceil unsigned int bit_ceil(unsigned int n) { unsigned int x = 1; while (x < (unsigned int)(n)) x *= 2; return x; } // @param n `1 <= n` // @return same with std::bit::countl_zero int countl_zero(unsigned int n) { return __builtin_clz(n); } // @param n `1 <= n` // @return same with std::bit::countr_zero int countr_zero(unsigned int n) { return __builtin_ctz(n); } // @param n `1 <= n` // @return same with std::bit::countr_zero constexpr int countr_zero_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } } // namespace internal #include <algorithm> #include <limits> #include <numeric> #include <utility> template <class T> struct Add { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs + rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs + rhs; } }; template <class T> struct Mul { using value_type = T; static constexpr T id() { return T(1); } static constexpr T op(const T &lhs, const T &rhs) { return lhs * rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs * rhs; } }; template <class T> struct And { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs & rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs & rhs; } }; template <class T> struct Or { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs | rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs | rhs; } }; template <class T> struct Xor { using value_type = T; static constexpr T id() { return T(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs ^ rhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs ^ rhs; } }; template <class T> struct Min { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return std::min(lhs, rhs); } template <class U> static constexpr U f(T lhs, U rhs) { return std::min((U)lhs, rhs); } }; template <class T> struct Max { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::lowest(); } static constexpr T op(const T &lhs, const T &rhs) { return std::max(lhs, rhs); } template <class U> static constexpr U f(T lhs, U rhs) { return std::max((U)lhs, rhs); } }; template <class T> struct Gcd { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Gcd::id() ? rhs : (rhs == Gcd::id() ? lhs : std::gcd(lhs, rhs)); } }; template <class T> struct Lcm { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Lcm::id() ? rhs : (rhs == Lcm::id() ? lhs : std::lcm(lhs, rhs)); } }; template <class T> struct Update { using value_type = T; static constexpr T id() { return std::numeric_limits<T>::max(); } static constexpr T op(const T &lhs, const T &rhs) { return lhs == Update::id() ? rhs : lhs; } template <class U> static constexpr U f(T lhs, U rhs) { return lhs == Update::id() ? rhs : lhs; } }; template <class T> struct Affine { using P = std::pair<T, T>; using value_type = P; static constexpr P id() { return P(1, 0); } static constexpr P op(P lhs, P rhs) { return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second}; } }; template <class M> struct Rev { using T = typename M::value_type; using value_type = T; static constexpr T id() { return M::id(); } static constexpr T op(T lhs, T rhs) { return M::op(rhs, lhs); } }; /** * @brief セグメント木 * @see https://noshi91.hatenablog.com/entry/2020/04/22/212649 * * @tparam M モノイド */ template <class M> struct segment_tree { private: using T = typename M::value_type; struct _segment_tree_reference { private: segment_tree<M> &self; int k; public: _segment_tree_reference(segment_tree<M> &self, int k) : self(self), k(k) {} _segment_tree_reference &operator=(const T &x) { self.set(k, x); return *this; } _segment_tree_reference &operator=(T &&x) { self.set(k, std::move(x)); return *this; } operator T() const { return self.get(k); } }; public: segment_tree() : segment_tree(0) {} explicit segment_tree(int n, T e = M::id()) : segment_tree(std::vector<T>(n, e)) {} template <class U> explicit segment_tree(const std::vector<U> &v) : _n(v.size()) { _size = internal::bit_ceil(_n); _log = internal::countr_zero(_size); data = std::vector<T>(_size << 1, M::id()); for (int i = 0; i < _n; ++i) data[_size + i] = T(v[i]); for (int i = _size - 1; i >= 1; --i) update(i); } const T &operator[](int k) const { return data[k + _size]; } _segment_tree_reference operator[](int k) { return _segment_tree_reference(*this, k); } T at(int k) const { return data[k + _size]; } T get(int k) const { return data[k + _size]; } void set(int k, T val) { assert(0 <= k && k < _n); k += _size; data[k] = val; for (int i = 1; i <= _log; ++i) update(k >> i); } void reset(int k) { set(k, M::id()); } T all_prod() const { return data[1]; } T prod(int a, int b) const { assert(0 <= a && b <= _n); T l = M::id(), r = M::id(); for (a += _size, b += _size; a < b; a >>= 1, b >>= 1) { if (a & 1) l = M::op(l, data[a++]); if (b & 1) r = M::op(data[--b], r); } return M::op(l, r); } template <class F> int max_right(F f) const { return max_right(0, f); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(M::id())); if (l == _n) return _n; l += _size; T sm = M::id(); do { while (l % 2 == 0) l >>= 1; if (!f(M::op(sm, data[l]))) { while (l < _size) { l = (2 * l); if (f(M::op(sm, data[l]))) { sm = M::op(sm, data[l]); l++; } } return l - _size; } sm = M::op(sm, data[l]); l++; } while ((l & -l) != l); return _n; } template <class F> int min_left(F f) const { return min_left(_n, f); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(M::id())); if (r == 0) return 0; r += _size; T sm = M::id(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(M::op(data[r], sm))) { while (r < _size) { r = (2 * r + 1); if (f(M::op(data[r], sm))) { sm = M::op(data[r], sm); r--; } } return r + 1 - _size; } sm = M::op(data[r], sm); } while ((r & -r) != r); return 0; } private: int _n, _size, _log; std::vector<T> data; void update(int k) { data[k] = M::op(data[2 * k], data[2 * k + 1]); } }; #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } /// @brief オイラーツアー struct euler_tour { template <class T> euler_tour(const Graph<T> &g, int r = 0) : euler_tour(g, g.size(), r) {} std::pair<int, int> operator[](int i) const { return std::make_pair(ls[i], rs[i]); } int size() const { return _size; } int left(int i) const { return ls[i]; } int right(int i) const { return rs[i]; } int order(int i) const { return ord[i]; } template <class F> void query(int v, const F &f) const { f(ls[v], rs[v]); } private: int _size; std::vector<int> ord, ls, rs; template <class T> euler_tour(const Graph<T> &g, int n, int r) : _size(n), ord(n), ls(n, -1), rs(n) { int c = 0; std::stack<int> st; st.emplace(r); while (!st.empty()) { auto x = st.top(); st.pop(); if (x < 0) { rs[~x] = c; continue; } ls[x] = c; ord[x] = c++; rs[x] = c; for (auto e : g[x]) { if (ls[e.to()] != -1) continue; st.emplace(~x); st.emplace(e.to()); } } } }; #include <bit> /// @brief スパーステーブル template <class M> struct sparse_table { private: using T = typename M::value_type; public: sparse_table() = default; sparse_table(const std::vector<T> &v) : _size(v.size()), data() { int b = std::max(1, std::countr_zero(std::bit_ceil<unsigned>(_size))); data.emplace_back(v); for (int i = 1; i < b; ++i) data.emplace_back(_size + 1 - (1 << i)); for (int i = 1; i < b; ++i) { for (int j = 0; j + (1 << i) <= _size; ++j) { data[i][j] = M::op(data[i - 1][j], data[i - 1][j + (1 << (i - 1))]); } } } T prod(int l, int r) const { assert(0 <= l && l <= r && r <= _size); if (l == r) return M::id(); if (l + 1 == r) return data[0][l]; int b = 31 - std::countl_zero<unsigned>(r - l - 1); return M::op(data[b][l], data[b][r - (1 << b)]); } private: int _size; std::vector<std::vector<T>> data; }; namespace internal { template <class T, int N> struct fixed_stack { constexpr fixed_stack() : _size(), _data() {} constexpr T top() const { return _data[_size - 1]; } constexpr bool empty() const { return _size == 0; } constexpr int size() const { return _size; } constexpr void emplace(const T &e) { _data[_size++] = e; } constexpr void emplace(T &&e) { _data[_size++] = e; } constexpr void pop() { --_size; } constexpr void clear() { _size = 0; } private: int _size; std::array<T, N> _data; }; } // namespace internal /** * @brief 線形 Sparse Table * * @tparam M */ template <class M> struct linear_sparse_table { private: using T = M::value_type; static constexpr int W = 64; public: linear_sparse_table() = default; linear_sparse_table(const std::vector<T> &v) : _size(v.size()), data(v) { int n = v.size(); int b = n / W; internal::fixed_stack<int, W + 1> st; std::vector<T> u(b); word_data.resize(b + (n > b * W)); for (int i = 0; i < b; ++i) { T m = M::id(); std::uint64_t bit = 0; std::vector<std::uint64_t> bits(W); for (int j = 0; j < W; ++j) { m = M::op(m, v[i * W + j]); while (!st.empty() && M::op(v[i * W + st.top()], v[i * W + j]) == v[i * W + j]) { bit ^= std::uint64_t(1) << st.top(); st.pop(); } bits[j] = bit; bit |= std::uint64_t(1) << j; st.emplace(j); } u[i] = m; word_data[i] = bits; st.clear(); } if (n > b * W) { std::uint64_t bit = 0; std::vector<std::uint64_t> bits(n - b * W); for (int j = 0; j < n - b * W; ++j) { while (!st.empty() && M::op(v[b * W + st.top()], v[b * W + j]) == v[b * W + j]) { bit ^= std::uint64_t(1) << st.top(); st.pop(); } bits[j] = bit; bit |= std::uint64_t(1) << j; st.emplace(j); } word_data[b] = bits; } block_table = sparse_table<M>(u); } const T &operator[](int k) const { return data[k]; } T prod(int l, int r) const { assert(0 <= l && l < r && r <= _size); int lb = (l + W - 1) / W, rb = r / W; if (lb > rb) return word_prod(l, r); T res = (lb == rb ? M::id() : block_table.prod(lb, rb)); if (l < lb * W) res = M::op(res, word_prod(l, lb * W)); if (rb * W < r) res = M::op(res, word_prod(rb * W, r)); return res; } private: int _size; std::vector<T> data; sparse_table<M> block_table; std::vector<std::vector<std::uint64_t>> word_data; T word_prod(int l, int r) const { if (l == r) return M::id(); int b = l / W; int lw = l - b * W, rw = r - b * W; if ((word_data[b][rw - 1] >> lw) == 0ul) return data[r - 1]; return data[l + std::countr_zero(word_data[b][rw - 1] >> lw)]; } }; struct linear_lca { private: struct S { int depth, index; bool operator<(const S &rhs) const { return depth < rhs.depth; } bool operator==(const S &rhs) const = default; }; struct M { using value_type = S; static constexpr S id() { return S{std::numeric_limits<int>::max(), -1}; } static constexpr S op(const S &lhs, const S &rhs) { return std::min(lhs, rhs); } }; public: template <class T> linear_lca(const Graph<T> &g, int r = 0) : ord(g.size(), -1), lst() { std::vector<S> v; std::stack<std::pair<int, int>> st; st.emplace(r, 0); while (!st.empty()) { auto [x, d] = st.top(); st.pop(); if (x < 0) { v.emplace_back(d, ~x); continue; } ord[x] = v.size(); v.emplace_back(d, x); for (auto e : g[x]) { if (ord[e.to()] != -1) continue; st.emplace(~x, d); st.emplace(e.to(), d + 1); } } lst = linear_sparse_table<M>(v); } int operator()(int u, int v) const { return lca(u, v); } int lca(int u, int v) const { auto [l, r] = std::minmax(ord[u], ord[v]); return lst.prod(l, r + 1).index; } private: std::vector<int> ord; linear_sparse_table<M> lst; }; struct auxiliary_tree : public Graph<void> { auxiliary_tree(const std::vector<int> &_ord, const std::vector<int> &_par, const std::vector<bool> &_f) : Graph::Graph(_par.size()), ord(_ord), f(_f) { int n = _par.size(); for (int i = 0; i < n; ++i) { if (_par[i] != -1) add_edges(_par[i], i); } } int vertex(int x) const { return ord[x]; } bool contains(int x) const { return f[x]; } private: std::vector<int> ord; std::vector<bool> f; }; struct auxiliary_tree_builder { template <class T> auxiliary_tree_builder(const Graph<T> &g, int r = 0) : lca(g, r), et(g, r) {} auxiliary_tree build(std::vector<int> v) { std::sort(v.begin(), v.end(), [&](int x, int y) { return et.order(x) < et.order(y); }); v.erase(std::unique(v.begin(), v.end()), v.end()); std::vector<int> ord = v; int k = ord.size(); for (int i = 0; i < k - 1; ++i) ord.emplace_back(lca(ord[i], ord[i + 1])); std::sort(ord.begin(), ord.end(), [&](int x, int y) { return et.order(x) < et.order(y); }); ord.erase(std::unique(ord.begin(), ord.end()), ord.end()); int m = ord.size(); std::vector<int> par(m); std::stack<int> st; for (int i = 0; i < m; ++i) { while (!st.empty() && et.right(ord[st.top()]) <= et.left(ord[i])) st.pop(); par[i] = (st.empty() ? -1 : st.top()); st.emplace(i); } std::vector<bool> f(m); int x = 0; for (int i = 0; i < m; ++i) { if (x < k && ord[i] == v[x]) { f[i] = true; ++x; } } return auxiliary_tree{ord, par, f}; } private: linear_lca lca; euler_tour et; }; namespace internal { struct graph_csr { private: struct edge_list { using const_iterator = std::vector<int>::const_iterator; edge_list(const graph_csr &g, int v) : g(g), v(v) {} const_iterator begin() const { return std::next(g.elist.begin(), g.start[v]); } const_iterator end() const { return std::next(g.elist.begin(), g.start[v + 1]); } private: const graph_csr &g; int v; }; public: graph_csr(int n) : _size(n), edges(), start(n + 1) {} edge_list operator[](int i) const { return edge_list(*this, i); } constexpr int size() const { return _size; } void build() { for (auto [u, v] : edges) ++start[u + 1]; for (int i = 0; i < _size; ++i) start[i + 1] += start[i]; auto counter = start; elist = std::vector<int>(edges.size()); for (auto [u, v] : edges) elist[counter[u]++] = v; } void add_edge(int u, int v) { edges.emplace_back(u, v); } void add_edges(int u, int v) { edges.emplace_back(u, v); edges.emplace_back(v, u); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edge(from - base, to - base); } build(); } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edges(from - base, to - base); } build(); } int _size; std::vector<std::pair<int, int>> edges; std::vector<int> elist; std::vector<int> start; }; } // namespace internal /** * @brief HL分解 * @see https://beet-aizu.github.io/library/tree/heavylightdecomposition.cpp */ struct heavy_light_decomposition { heavy_light_decomposition() = default; template <class T> heavy_light_decomposition(const Graph<T> &g, int r = 0) : heavy_light_decomposition(g.size()) { std::vector<int> heavy_path(_size, -1), sub_size(_size, 1); std::stack<int> st; st.emplace(r); int pos = 0; while (!st.empty()) { int v = st.top(); st.pop(); vid[pos++] = v; for (auto &e : g[v]) { int u = e.to(); if (u == par[v]) continue; par[u] = v, dep[u] = dep[v] + 1, st.emplace(u); } } for (int i = _size - 1; i >= 0; --i) { int v = vid[i]; int max_sub = 0; for (auto &e : g[v]) { int u = e.to(); if (u == par[v]) continue; sub_size[v] += sub_size[u]; if (max_sub < sub_size[u]) max_sub = sub_size[u], heavy_path[v] = u; } } nxt[r] = r; pos = 0; st.emplace(r); while (!st.empty()) { int v = st.top(); st.pop(); vid[v] = pos++; inv[vid[v]] = v; int hp = heavy_path[v]; for (auto &e : g[v]) { int u = e.to(); if (u == par[v] || u == hp) continue; nxt[u] = u, st.emplace(u); } if (hp != -1) nxt[hp] = nxt[v], st.emplace(hp); } } heavy_light_decomposition(const internal::graph_csr &g, int r = 0) : heavy_light_decomposition(g.size()) { std::vector<int> heavy_path(_size, -1), sub_size(_size, 1); std::stack<int> st; st.emplace(r); int pos = 0; while (!st.empty()) { int v = st.top(); st.pop(); vid[pos++] = v; for (int u : g[v]) { if (u == par[v]) continue; par[u] = v, dep[u] = dep[v] + 1, st.emplace(u); } } for (int i = _size - 1; i >= 0; --i) { int v = vid[i]; int max_sub = 0; for (int u : g[v]) { if (u == par[v]) continue; sub_size[v] += sub_size[u]; if (max_sub < sub_size[u]) max_sub = sub_size[u], heavy_path[v] = u; } } nxt[r] = r; pos = 0; st.emplace(r); while (!st.empty()) { int v = st.top(); st.pop(); vid[v] = pos++; inv[vid[v]] = v; int hp = heavy_path[v]; for (int u : g[v]) { if (u == par[v] || u == hp) continue; nxt[u] = u, st.emplace(u); } if (hp != -1) nxt[hp] = nxt[v], st.emplace(hp); } } constexpr int size() const { return _size; } int get(int v) const { return vid[v]; } int get_parent(int v) const { return par[v]; } int get_depth(int v) const { return dep[v]; } int dist(int u, int v) const { int d = 0; while (true) { if (vid[u] > vid[v]) std::swap(u, v); if (nxt[u] == nxt[v]) return d + vid[v] - vid[u]; d += vid[v] - vid[nxt[v]] + 1; v = par[nxt[v]]; } } int jump(int u, int v, int k) const { int d = dist(u, v); if (d < k) return -1; int l = lca(u, v); if (dist(u, l) >= k) return la(u, k); else return la(v, d - k); } int la(int v, int k) const { while (true) { int u = nxt[v]; if (vid[v] - k >= vid[u]) return inv[vid[v] - k]; k -= vid[v] - vid[u] + 1; v = par[u]; } } int lca(int u, int v) const { while (true) { if (vid[u] > vid[v]) std::swap(u, v); if (nxt[u] == nxt[v]) return u; v = par[nxt[v]]; } } template <class F> void for_each(int u, int v, const F &f) const { while (true) { if (vid[u] > vid[v]) std::swap(u, v); f(std::max(vid[nxt[v]], vid[u]), vid[v] + 1); if (nxt[u] != nxt[v]) v = par[nxt[v]]; else break; } } template <class F> void for_each_edge(int u, int v, const F &f) const { while (true) { if (vid[u] > vid[v]) std::swap(u, v); if (nxt[u] != nxt[v]) { f(vid[nxt[v]], vid[v] + 1); v = par[nxt[v]]; } else { if (u != v) f(vid[u] + 1, vid[v] + 1); break; } } } private: int _size; std::vector<int> vid, nxt, par, dep, inv; heavy_light_decomposition(int n) : _size(n), vid(n, -1), nxt(n), par(n, -1), dep(n), inv(n) {} }; int main(void) { int n; cin >> n; Graph<ll> g(n); g.input_edges(n - 1, 0); heavy_light_decomposition hld(g); segment_tree<Add<ll>> st(n); auto f = [&](auto self, int x, int p) -> void { for (auto e : g[x]) { if (e.to() == p) continue; st.set(hld.get(e.to()), e.weight()); self(self, e.to(), x); } }; f(f, 0, -1); auxiliary_tree_builder at(g); int q; cin >> q; while (q--) { int k; cin >> k; vector<int> x(k); cin >> x; auto tr = at.build(x); ll ans = 0; auto g = [&](int x, int y) { ans += st.prod(x, y); }; auto dfs = [&](auto self, int v, int p) -> void { for (auto e : tr[v]) { if (e.to() == p) continue; hld.for_each_edge(tr.vertex(v), tr.vertex(e.to()), g); self(self, e.to(), v); } }; dfs(dfs, 0, -1); co(ans); } return 0; }