結果

問題 No.3047 Verification of Sorting Network
ユーザー 👑 Mizar
提出日時 2025-03-13 04:23:50
言語 Rust
(1.83.0 + proconio)
結果
RE  
実行時間 -
コード長 14,357 bytes
コンパイル時間 15,836 ms
コンパイル使用メモリ 389,932 KB
実行使用メモリ 7,328 KB
最終ジャッジ日時 2025-03-13 04:29:32
合計ジャッジ時間 19,386 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 55 RE * 6
権限があれば一括ダウンロードができます

ソースコード

diff #

const PROGRESS_THRESHOLD: usize = 28;

const MAX_T: usize = 1000;
const MAX_N: usize = 64;
const MAX_COST: f64 = 1e17;

type State = u64;

// Check if the given comparator network is a sorting network
pub fn is_sorting_network(n: usize, cmp: &[(usize, usize)]) -> Result<Vec<bool>, Vec<bool>> {
    // Worst-case time complexity: O(FIB1[n] * (m + n*d))
    // m: number of comparators, n: number of input elements, d: depth (layers)
    debug_assert!(2 <= n && (n as usize) <= MAX_N && n <= State::BITS as _);
    // Ensure 0-indexed and a < b and b < n
    debug_assert!(cmp.iter().all(|&(a, b)| a < b && b < n));
    // Fibonacci numbers: FIB1[0] = 1, FIB1[1] = 1, FIB1[i] = FIB1[i-1] + FIB1[i-2] (2 <= i <= State::BITS)
    const FIB1: [State; (State::BITS + 1) as usize] = {
        let mut fib = [1; (State::BITS + 1) as usize];
        let mut i = 2;
        while i <= State::BITS as usize {
            fib[i] = fib[i - 1] + fib[i - 2];
            i += 1;
        }
        fib
    };
    // List of comparators per layer
    #[derive(Debug, Clone, Copy)]
    struct CeEntry {
        cei: usize,
        a: usize,
        b: usize,
    }
    #[derive(Debug, Clone, Copy)]
    struct CombineEntry {
        root_master: usize,
        root_slave: usize,
    }
    #[derive(Debug, Clone)]
    enum CmpLayer {
        Cmp { root: usize, cmp_part: Vec<CeEntry> },
        Combine(CombineEntry),
    }
    // Construct search processing order
    let cmp_layers = {
        let mut cmp_layered = vec![false; cmp.len()];
        let mut cmp_skip = 0usize;
        let mut dsu = DsuBySize::new(n);
        let mut layers = vec![];
        while cmp_skip < cmp.len() {
            let mut layer_checked = vec![false; n];
            let mut layer = (0..n).map(|_i| Vec::<CeEntry>::new()).collect::<Vec<_>>();
            let mut combine = (usize::MAX, 0, 0);
            for (i, &(a, b)) in cmp.iter().enumerate().skip(cmp_skip) {
                if cmp_layered[i] {
                    continue;
                }
                let checked = layer_checked[a] || layer_checked[b];
                layer_checked[a] = true;
                layer_checked[b] = true;
                if checked {
                    continue;
                }
                if dsu.equiv(a, b) {
                    let (root_a, _) = dsu.root_size(a);
                    layer[root_a].push(CeEntry { cei: i, a, b });
                    cmp_layered[i] = true;
                } else {
                    let (root_a, size_a) = dsu.root_size(a);
                    let (root_b, size_b) = dsu.root_size(b);
                    combine = combine.min((size_a + size_b, root_a, root_b));
                }
            }
            if layer.iter().all(|v| v.is_empty()) {
                let (size, root_a, root_b) = combine;
                if size == usize::MAX {
                    break;
                }
                dsu.unite(root_a, root_b);
                let (root_master, _) = dsu.root_size(root_a);
                let root_slave = root_a ^ root_b ^ root_master;
                layers.push(CmpLayer::Combine(CombineEntry {
                    root_master,
                    root_slave,
                }));
            } else {
                for (root, ces) in layer.iter().enumerate() {
                    if !ces.is_empty() {
                        layers.push(CmpLayer::Cmp {
                            root,
                            cmp_part: ces.clone(),
                        });
                    }
                }
                for (i, &f) in cmp_layered.iter().enumerate().skip(cmp_skip) {
                    if f {
                        cmp_skip = i + 1;
                    } else {
                        break;
                    }
                }
            }
        }
        layers
    };
    // State vector for each input (integrated into the root node of each connection when the connection changes)
    let mut states = (0..n)
        .map(|i| vec![((1 as State) << i, (1 as State) << i)])
        .collect::<Vec<_>>();
    // unused[i]: whether the i-th element is used in the sorting network
    let mut unused = vec![true; cmp.len()];
    // unsorted[i]: whether the i-th and (i+1)-th element pairs may not be sorted
    let mut unsorted_i: State = 0;
    let mut dsu = DsuBySize::new(n);
    for job in cmp_layers {
        match job {
            CmpLayer::Combine(CombineEntry {
                root_master,
                root_slave,
            }) => {
                let (_, size_master) = dsu.root_size(root_master);
                let (_, size_slave) = dsu.root_size(root_slave);
                dsu.unite(root_master, root_slave);
                let (_, size_united) = dsu.root_size(root_master);
                let master_len = states[root_master].len();
                let slave_len = states[root_slave].len();
                let mut united_status =
                    Vec::with_capacity(states[root_master].len() * states[root_slave].len());
                for &(sz, so) in states[root_slave].iter() {
                    for &(mz, mo) in states[root_master].iter() {
                        united_status.push((sz | mz, so | mo));
                    }
                }
                let united_len = united_status.len();
                states[root_slave] = vec![];
                states[root_master] = united_status;
                if PROGRESS_THRESHOLD <= n {
                    eprintln!(
                        "Combining, size: {}+{}=>{}, len: {}*{}=>{}, root_master: {}, root_slave: {}",
                        size_master,
                        size_slave,
                        size_united,
                        master_len,
                        slave_len,
                        united_len,
                        root_master,
                        root_slave,
                    );
                }
            }
            CmpLayer::Cmp { root, cmp_part } => {
                let (_, size) = dsu.root_size(root);
                let len_pre = states[root].len();
                let states_cap = (FIB1[size] as usize).min(len_pre * 2);
                let mut states_next = Vec::with_capacity(states_cap);
                let mut stack = Vec::<(usize, State, State)>::with_capacity(states[root].len() + n);
                for (mut z, mut o) in states[root].iter() {
                    for (i, &CeEntry { cei, a, b }) in cmp_part.iter().enumerate() {
                        if (o >> a) & 1 == 0 || (z >> b) & 1 == 0 {
                            continue;
                        } else if (z >> a) & 1 == 0 || (o >> b) & 1 == 0 {
                            unused[cei] = false;
                            let (xz, xo) = (((z >> a) ^ (z >> b)) & 1, ((o >> a) ^ (o >> b)) & 1);
                            z ^= xz << a | xz << b;
                            o ^= xo << a | xo << b;
                        } else {
                            unused[cei] = false;
                            let (qz, qo) = (z, o & !(1 << a) & !(1 << b));
                            z &= !(1 << b);
                            stack.push((i + 1, qz, qo));
                        }
                    }
                    states_next.push((z, o));
                }
                while let Some((mut i, mut z, mut o)) = stack.pop() {
                    while let Some(&CeEntry { cei, a, b }) = cmp_part.get(i) {
                        i += 1;
                        if (o >> a) & 1 == 0 || (z >> b) & 1 == 0 {
                            continue;
                        } else if (z >> a) & 1 == 0 || (o >> b) & 1 == 0 {
                            unused[cei] = false;
                            let (xz, xo) = (((z >> a) ^ (z >> b)) & 1, ((o >> a) ^ (o >> b)) & 1);
                            z ^= xz << a | xz << b;
                            o ^= xo << a | xo << b;
                        } else {
                            unused[cei] = false;
                            let (qz, qo) = (z, o & !(1 << a) & !(1 << b));
                            z &= !(1 << b);
                            stack.push((i, qz, qo));
                        }
                    }
                    states_next.push((z, o));
                }
                let len_gen = states_next.len();
                assert!(len_gen <= states_cap);
                states_next.sort_unstable();
                states_next.dedup();
                let len_dedup = states_next.len();
                states[root] = states_next;
                if PROGRESS_THRESHOLD <= n {
                    let cmp_tuple = cmp_part
                        .iter()
                        .map(|&CeEntry { cei, a, b }| (cei, a, b))
                        .collect::<Vec<_>>();
                    eprintln!(
                        "AppliedCE, size: {}, len: {}=>{}=>{}, root: {}, cmp: {:?}",
                        size, len_pre, len_gen, len_dedup, root, cmp_tuple
                    );
                }
            }
        }
    }
    for queue in states.iter() {
        let n1_mask = State::MAX >> (State::BITS - (n - 1) as u32);
        let q_mask = queue.first().map(|&(z, o)| z | o).unwrap_or(0);
        unsorted_i |= (q_mask & (!q_mask >> 1)) & n1_mask;
        for &(z, o) in queue.iter() {
            unsorted_i |= o & (z >> 1);
        }
    }
    // All branches are finished
    if PROGRESS_THRESHOLD <= n {
        eprintln!();
    }
    // If any branch is not sorted, unsorted_i is non-zero, so it is not a sorting network
    if unsorted_i != 0 {
        // Return positions that may not be sorted
        Err(Vec::from_iter(
            (0..n - 1).map(|k| (unsorted_i >> k) & 1 != 0),
        ))
    } else {
        // If all branches are sorted, it is a sorting network
        // Return unused comparators
        Ok(unused)
    }
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    use std::io::Write;
    let execution_start = std::time::Instant::now();
    let stdin = std::io::stdin();
    let mut lines = std::io::BufRead::lines(stdin.lock());
    let mut bout = std::io::BufWriter::new(std::io::stdout());

    let t: usize = lines.next().unwrap()?.trim().parse()?;
    assert!(t <= MAX_T);

    // φ = (1 + √5) / 2 : golden ratio 1.618033988749895
    let phi = (1.25f64).sqrt() + 0.5;
    let mut cost = 0f64;

    for _ in 0..t {
        let line = lines.next().unwrap()?;
        let mut parts = line.split_whitespace();
        let n: usize = parts.next().unwrap().parse()?;
        let m: usize = parts.next().unwrap().parse()?;
        assert!(2 <= n && (n as usize) <= MAX_N);
        assert!(1 <= m && m <= (n as usize) * ((n as usize) - 1) / 2);
        cost += m as f64 * phi.powi(n as i32);
        // Test case cost <= MAX_COST
        assert!(cost <= MAX_COST);

        // Read comparators
        let vec_a = lines
            .next()
            .unwrap()?
            .split_whitespace()
            .map(|s| s.parse::<usize>().unwrap())
            .collect::<Vec<_>>();
        let vec_b = lines
            .next()
            .unwrap()?
            .split_whitespace()
            .map(|s| s.parse::<usize>().unwrap())
            .collect::<Vec<_>>();
        assert!(vec_a.len() == m && vec_b.len() == m);
        assert!(vec_a.iter().all(|&a| 1 <= a && a <= n));
        assert!(vec_b.iter().all(|&b| 1 <= b && b <= n));
        let cmp = vec_a
            .iter()
            .zip(vec_b.iter())
            .map(|(&a, &b)| ((a - 1) as usize, (b - 1) as usize))
            .collect::<Vec<_>>();
        assert!(cmp.len() == m);
        assert!(cmp.iter().all(|&(a, b)| a < b));

        // Check if it is a sorting network
        match is_sorting_network(n, &cmp) {
            Ok(unused) => {
                writeln!(&mut bout, "Yes")?;
                // List unused comparators j
                writeln!(&mut bout, "{}", unused.iter().filter(|&&f| f).count())?;
                // 1-indexed
                writeln!(
                    &mut bout,
                    "{}",
                    unused
                        .iter()
                        .enumerate()
                        .filter_map(|(j, &u)| if u { Some((j + 1).to_string()) } else { None })
                        .collect::<Vec<_>>()
                        .join(" ")
                )?;
            }
            Err(unsorted) => {
                writeln!(&mut bout, "No")?;
                // List positions k that may not be sorted
                writeln!(&mut bout, "{}", unsorted.iter().filter(|&&f| f).count())?;
                // 1-indexed
                writeln!(
                    &mut bout,
                    "{}",
                    unsorted
                        .iter()
                        .enumerate()
                        .filter_map(|(k, &u)| if u { Some((k + 1).to_string()) } else { None })
                        .collect::<Vec<_>>()
                        .join(" ")
                )?;
            }
        }
    }
    bout.flush()?;
    eprintln!("{:.6}[s]", execution_start.elapsed().as_secs_f64());
    Ok(())
}

enum DsuBySizeElement {
    Size(usize),
    Parent(usize),
}
struct DsuBySize(Vec<DsuBySizeElement>);
impl DsuBySize {
    fn new(n: usize) -> Self {
        Self((0..n).map(|_| DsuBySizeElement::Size(1)).collect())
    }
    fn root_size(&mut self, u: usize) -> (usize, usize) {
        match self.0[u] {
            DsuBySizeElement::Size(size) => (u, size),
            DsuBySizeElement::Parent(v) if u == v => (u, 1),
            DsuBySizeElement::Parent(v) => {
                let (root, size) = self.root_size(v);
                self.0[u] = DsuBySizeElement::Parent(root);
                (root, size)
            }
        }
    }
    fn unite(&mut self, u: usize, v: usize) -> bool {
        let (u, size_u) = self.root_size(u);
        let (v, size_v) = self.root_size(v);
        if u == v {
            return false;
        }
        if size_u < size_v {
            self.0[u] = DsuBySizeElement::Parent(v);
            self.0[v] = DsuBySizeElement::Size(size_u + size_v);
        } else {
            self.0[v] = DsuBySizeElement::Parent(u);
            self.0[u] = DsuBySizeElement::Size(size_u + size_v);
        }
        true
    }
    fn equiv(&mut self, u: usize, v: usize) -> bool {
        self.root_size(u).0 == self.root_size(v).0
    }
}
0