結果
問題 |
No.3047 Verification of Sorting Network
|
ユーザー |
👑 |
提出日時 | 2025-03-13 04:46:57 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 172 ms / 2,000 ms |
コード長 | 14,454 bytes |
コンパイル時間 | 14,111 ms |
コンパイル使用メモリ | 401,184 KB |
実行使用メモリ | 7,324 KB |
最終ジャッジ日時 | 2025-03-13 04:47:17 |
合計ジャッジ時間 | 19,453 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 61 |
ソースコード
const PROGRESS_THRESHOLD: usize = 28; const MAX_T: usize = 1000; const MAX_N: usize = 64; const MAX_COST: f64 = 1e17; type State = u64; // Check if the given comparator network is a sorting network pub fn is_sorting_network(n: usize, cmp: &[(usize, usize)]) -> Result<Vec<bool>, Vec<bool>> { // Worst-case time complexity: O(FIB1[n] * (m + n*d)) // m: number of comparators, n: number of input elements, d: depth (layers) debug_assert!(2 <= n && (n as usize) <= MAX_N && n <= State::BITS as _); // Ensure 0-indexed and a < b and b < n debug_assert!(cmp.iter().all(|&(a, b)| a < b && b < n)); // Fibonacci numbers: FIB1[0] = 1, FIB1[1] = 1, FIB1[i] = FIB1[i-1] + FIB1[i-2] (2 <= i <= State::BITS) const FIB1: [State; (State::BITS + 1) as usize] = { let mut fib = [1; (State::BITS + 1) as usize]; let mut i = 2; while i <= State::BITS as usize { fib[i] = fib[i - 1] + fib[i - 2]; i += 1; } fib }; // List of comparators per layer #[derive(Debug, Clone, Copy)] struct CeEntry { cei: usize, a: usize, b: usize, } #[derive(Debug, Clone, Copy)] struct CombineEntry { root_master: usize, root_slave: usize, } #[derive(Debug, Clone)] enum CmpLayer { Cmp { root: usize, cmp_part: Vec<CeEntry> }, Combine(CombineEntry), } // Construct search processing order let cmp_layers = { let mut cmp_layered = vec![false; cmp.len()]; let mut cmp_skip = 0usize; let mut dsu = DsuBySize::new(n); let mut layers = vec![]; while cmp_skip < cmp.len() { let mut layer_checked = vec![false; n]; let mut layer = (0..n).map(|_i| Vec::<CeEntry>::new()).collect::<Vec<_>>(); let mut combine = (usize::MAX, 0, 0); for (i, &(a, b)) in cmp.iter().enumerate().skip(cmp_skip) { if cmp_layered[i] { continue; } let checked = layer_checked[a] || layer_checked[b]; layer_checked[a] = true; layer_checked[b] = true; if checked { continue; } if dsu.equiv(a, b) { let (root_a, _) = dsu.root_size(a); layer[root_a].push(CeEntry { cei: i, a, b }); cmp_layered[i] = true; } else { let (root_a, size_a) = dsu.root_size(a); let (root_b, size_b) = dsu.root_size(b); combine = combine.min((size_a + size_b, root_a, root_b)); } } if layer.iter().all(|v| v.is_empty()) { let (size, root_a, root_b) = combine; if size == usize::MAX { break; } dsu.unite(root_a, root_b); let (root_master, _) = dsu.root_size(root_a); let root_slave = root_a ^ root_b ^ root_master; layers.push(CmpLayer::Combine(CombineEntry { root_master, root_slave, })); } else { for (root, ces) in layer.iter().enumerate() { if !ces.is_empty() { layers.push(CmpLayer::Cmp { root, cmp_part: ces.clone(), }); } } for (i, &f) in cmp_layered.iter().enumerate().skip(cmp_skip) { if f { cmp_skip = i + 1; } else { break; } } } } layers }; // State vector for each input (integrated into the root node of each connection when the connection changes) let mut states = (0..n) .map(|i| vec![((1 as State) << i, (1 as State) << i)]) .collect::<Vec<_>>(); // unused[i]: whether the i-th element is used in the sorting network let mut unused = vec![true; cmp.len()]; // unsorted[i]: whether the i-th and (i+1)-th element pairs may not be sorted let mut unsorted_i: State = 0; let mut dsu = DsuBySize::new(n); for job in cmp_layers { match job { CmpLayer::Combine(CombineEntry { root_master, root_slave, }) => { let (_, size_master) = dsu.root_size(root_master); let (_, size_slave) = dsu.root_size(root_slave); dsu.unite(root_master, root_slave); let (_, size_united) = dsu.root_size(root_master); let master_len = states[root_master].len(); let slave_len = states[root_slave].len(); let mut united_status = Vec::with_capacity(states[root_master].len() * states[root_slave].len()); for &(sz, so) in states[root_slave].iter() { for &(mz, mo) in states[root_master].iter() { united_status.push((sz | mz, so | mo)); } } let united_len = united_status.len(); states[root_slave] = vec![]; states[root_master] = united_status; if PROGRESS_THRESHOLD <= n { eprintln!( "Combining, size: {}+{}=>{}, len: {}*{}=>{}, root_master: {}, root_slave: {}", size_master, size_slave, size_united, master_len, slave_len, united_len, root_master, root_slave, ); } } CmpLayer::Cmp { root, cmp_part } => { let (_, size) = dsu.root_size(root); let len_pre = states[root].len(); let states_cap = FIB1[size] as usize; let mut states_next = Vec::with_capacity(states_cap); let mut stack = Vec::<(usize, State, State)>::with_capacity(states[root].len() + n); for (mut z, mut o) in states[root].iter() { for (i, &CeEntry { cei, a, b }) in cmp_part.iter().enumerate() { if (o >> a) & 1 == 0 || (z >> b) & 1 == 0 { continue; } else if (z >> a) & 1 == 0 || (o >> b) & 1 == 0 { unused[cei] = false; let (xz, xo) = (((z >> a) ^ (z >> b)) & 1, ((o >> a) ^ (o >> b)) & 1); z ^= xz << a | xz << b; o ^= xo << a | xo << b; } else { unused[cei] = false; let (qz, qo) = (z, o & !(1 << a) & !(1 << b)); z &= !(1 << b); stack.push((i + 1, qz, qo)); } } states_next.push((z, o)); } while let Some((mut i, mut z, mut o)) = stack.pop() { while let Some(&CeEntry { cei, a, b }) = cmp_part.get(i) { i += 1; if (o >> a) & 1 == 0 || (z >> b) & 1 == 0 { continue; } else if (z >> a) & 1 == 0 || (o >> b) & 1 == 0 { unused[cei] = false; let (xz, xo) = (((z >> a) ^ (z >> b)) & 1, ((o >> a) ^ (o >> b)) & 1); z ^= xz << a | xz << b; o ^= xo << a | xo << b; } else { unused[cei] = false; let (qz, qo) = (z, o & !(1 << a) & !(1 << b)); z &= !(1 << b); stack.push((i, qz, qo)); } } states_next.push((z, o)); } let len_gen = states_next.len(); assert!(len_gen <= states_cap, "n: {}, cmp: {:?}, size: {}, len_pre: {}, states_next.len(): {} <= {}", n, cmp, size, len_pre, len_gen, states_cap); states_next.sort_unstable(); states_next.dedup(); let len_dedup = states_next.len(); states[root] = states_next; if PROGRESS_THRESHOLD <= n { let cmp_tuple = cmp_part .iter() .map(|&CeEntry { cei, a, b }| (cei, a, b)) .collect::<Vec<_>>(); eprintln!( "AppliedCE, size: {}, len: {}=>{}=>{}, root: {}, cmp: {:?}", size, len_pre, len_gen, len_dedup, root, cmp_tuple ); } } } } for queue in states.iter() { let n1_mask = State::MAX >> (State::BITS - (n - 1) as u32); let q_mask = queue.first().map(|&(z, o)| z | o).unwrap_or(0); unsorted_i |= (q_mask & (!q_mask >> 1)) & n1_mask; for &(z, o) in queue.iter() { unsorted_i |= o & (z >> 1); } } // All branches are finished if PROGRESS_THRESHOLD <= n { eprintln!(); } // If any branch is not sorted, unsorted_i is non-zero, so it is not a sorting network if unsorted_i != 0 { // Return positions that may not be sorted Err(Vec::from_iter( (0..n - 1).map(|k| (unsorted_i >> k) & 1 != 0), )) } else { // If all branches are sorted, it is a sorting network // Return unused comparators Ok(unused) } } fn main() -> Result<(), Box<dyn std::error::Error>> { use std::io::Write; let execution_start = std::time::Instant::now(); let stdin = std::io::stdin(); let mut lines = std::io::BufRead::lines(stdin.lock()); let mut bout = std::io::BufWriter::new(std::io::stdout()); let t: usize = lines.next().unwrap()?.trim().parse()?; assert!(t <= MAX_T); // φ = (1 + √5) / 2 : golden ratio 1.618033988749895 let phi = (1.25f64).sqrt() + 0.5; let mut cost = 0f64; for _ in 0..t { let line = lines.next().unwrap()?; let mut parts = line.split_whitespace(); let n: usize = parts.next().unwrap().parse()?; let m: usize = parts.next().unwrap().parse()?; assert!(2 <= n && (n as usize) <= MAX_N); assert!(1 <= m && m <= (n as usize) * ((n as usize) - 1) / 2); cost += m as f64 * phi.powi(n as i32); // Test case cost <= MAX_COST assert!(cost <= MAX_COST); // Read comparators let vec_a = lines .next() .unwrap()? .split_whitespace() .map(|s| s.parse::<usize>().unwrap()) .collect::<Vec<_>>(); let vec_b = lines .next() .unwrap()? .split_whitespace() .map(|s| s.parse::<usize>().unwrap()) .collect::<Vec<_>>(); assert!(vec_a.len() == m && vec_b.len() == m); assert!(vec_a.iter().all(|&a| 1 <= a && a <= n)); assert!(vec_b.iter().all(|&b| 1 <= b && b <= n)); let cmp = vec_a .iter() .zip(vec_b.iter()) .map(|(&a, &b)| ((a - 1) as usize, (b - 1) as usize)) .collect::<Vec<_>>(); assert!(cmp.len() == m); assert!(cmp.iter().all(|&(a, b)| a < b)); // Check if it is a sorting network match is_sorting_network(n, &cmp) { Ok(unused) => { writeln!(&mut bout, "Yes")?; // List unused comparators j writeln!(&mut bout, "{}", unused.iter().filter(|&&f| f).count())?; // 1-indexed writeln!( &mut bout, "{}", unused .iter() .enumerate() .filter_map(|(j, &u)| if u { Some((j + 1).to_string()) } else { None }) .collect::<Vec<_>>() .join(" ") )?; } Err(unsorted) => { writeln!(&mut bout, "No")?; // List positions k that may not be sorted writeln!(&mut bout, "{}", unsorted.iter().filter(|&&f| f).count())?; // 1-indexed writeln!( &mut bout, "{}", unsorted .iter() .enumerate() .filter_map(|(k, &u)| if u { Some((k + 1).to_string()) } else { None }) .collect::<Vec<_>>() .join(" ") )?; } } } bout.flush()?; eprintln!("{:.6}[s]", execution_start.elapsed().as_secs_f64()); Ok(()) } enum DsuBySizeElement { Size(usize), Parent(usize), } struct DsuBySize(Vec<DsuBySizeElement>); impl DsuBySize { fn new(n: usize) -> Self { Self((0..n).map(|_| DsuBySizeElement::Size(1)).collect()) } fn root_size(&mut self, u: usize) -> (usize, usize) { match self.0[u] { DsuBySizeElement::Size(size) => (u, size), DsuBySizeElement::Parent(v) if u == v => (u, 1), DsuBySizeElement::Parent(v) => { let (root, size) = self.root_size(v); self.0[u] = DsuBySizeElement::Parent(root); (root, size) } } } fn unite(&mut self, u: usize, v: usize) -> bool { let (u, size_u) = self.root_size(u); let (v, size_v) = self.root_size(v); if u == v { return false; } if size_u < size_v { self.0[u] = DsuBySizeElement::Parent(v); self.0[v] = DsuBySizeElement::Size(size_u + size_v); } else { self.0[v] = DsuBySizeElement::Parent(u); self.0[u] = DsuBySizeElement::Size(size_u + size_v); } true } fn equiv(&mut self, u: usize, v: usize) -> bool { self.root_size(u).0 == self.root_size(v).0 } }