結果
問題 |
No.2029 Swap Min Max Min
|
ユーザー |
|
提出日時 | 2025-03-13 16:35:34 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 90 ms / 2,000 ms |
コード長 | 8,674 bytes |
コンパイル時間 | 7,884 ms |
コンパイル使用メモリ | 333,296 KB |
実行使用メモリ | 18,676 KB |
最終ジャッジ日時 | 2025-03-13 16:35:46 |
合計ジャッジ時間 | 11,492 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 42 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define RDVL(T,n,...) vec<T>__VA_ARGS__;resizes({n},__VA_ARGS__);lin(__VA_ARGS__) #define VL(n,...) RDVL(ll,n,__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i+=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define ef(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):ranges::reverse_view(a)) #define base_operator(op,type) auto operator op(const type&v)const{auto copy=*this;return copy op##=v;} #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; constexpr auto range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} constexpr auto range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};} constexpr char newline=10; constexpr char space=32; constexpr auto schrodinger(bool p,char c){return string(p,c);} constexpr auto schrodinger(bool p,auto c){return p*c;} constexpr auto odd(auto x){return x&1;} constexpr auto even(auto x){return~x&1;} constexpr auto parity(auto x){return x&1;} constexpr auto abs(auto x){return x<0?-x:x;} bool amin(auto&a,const auto&b){return b<a?a=b,1:0;} auto max(auto...a){return max(initializer_list<common_type_t<decltype(a)...>>{a...});} auto min(auto...a){return min(initializer_list<common_type_t<decltype(a)...>>{a...});} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} auto&unique(auto&a){sort(a).erase(ranges::unique(a).begin(),a.end());return a;} template<bool is_negative=false>struct infinity{ template<integral T>constexpr operator T()const{return numeric_limits<T>::max()/2*(1-is_negative*2);} template<floating_point T>constexpr operator T()const{return static_cast<ll>(*this);} template<class T>constexpr bool operator==(T x)const{return static_cast<T>(*this)==x;} constexpr auto operator-()const{return infinity<!is_negative>();} template<class A,class B>constexpr operator pair<A,B>()const{return pair<A,B>{*this,*this};} }; constexpr infinity oo; template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>; template<class V>concept vectorial=is_base_of_v<vector<typename remove_cvref_t<V>::value_type>,remove_cvref_t<V>>; template<class V>constexpr int rank(){if constexpr(vectorial<V>)return rank<typename V::value_type>()+1;else return 0;} template<class T>struct core_t_helper{using core_t=T;}; template<vectorial V>struct core_t_helper<V>{using core_t=typename core_t_helper<typename V::value_type>::core_t;}; template<class T>using core_t=core_t_helper<T>::core_t; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<schrodinger(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec; template<int rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;}; template<class T>struct tensor_helper<0,T>{using type=T;}; template<int rank,class T>using tensor=typename tensor_helper<rank,T>::type; template<class V>struct vec:vector<V>{ static constexpr int R=rank<vec<V>>(); using C=core_t<V>; using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} vec(const auto&...a)requires(sizeof...(a)>=3){resizes(a...);} void resizes(const auto&...a){*this=make(a...);} static auto make(ll n,const auto&...a){if constexpr(sizeof...(a)==1)return vec<C>(n,array{a...}[0]);else return vec<decltype(make(a...))>(n,make(a...));} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;} base_operator(^,vec) base_operator(+,vec) base_operator(-,vec) vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} ll size()const{return vector<V>::size();} auto iota()const{vec<ll>r(size());std::iota(r.begin(),r.end(),0);return r;} auto pop_back(){auto r=this->back();vector<V>::pop_back();return r;} auto lower_bound(const V&x)const{return std::lower_bound(this->begin(),this->end(),x);} ll arg_lower_bound(const V&x)const{return lower_bound(x)-this->begin();} auto scan(const auto&f)const{ pair<C,bool>r{}; if constexpr(!vectorial<V>)fe(*this,e)r.b?f(r.a,e),r:r={e,1}; else fe(*this,e)if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s; return r; } auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;} auto max()const{return scan([](auto&a,auto b){a<b?a=b:0;}).a;} auto min()const{return scan([](auto&a,auto b){b<a?a=b:0;;}).a;} template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;} template<class F=less<>>auto stable_sort(F f={})const{vec v=*this;ranges::stable_sort(v,f);return v;} template<class F=less<>>auto sort_index(F f={})const{const vec&v=*this;return iota().stable_sort([&](ll i,ll j){return f(v[i],v[j]);});} auto flatten()const{if constexpr(!vectorial<V>)return*this;else{vec<C>res;fe(*this,e)res^=e.flatten();return res;}} auto unique()const{auto res=flatten().sort();return my::unique(res);} auto zip_impl(const vec<C>&v)const{ tensor<R,ll>res;res.reserve(size()); fe(*this,e){ if constexpr(vectorial<V>)res.eb(e.zip_impl(v)); else res.eb(v.arg_lower_bound(e)); } return res; } auto zip()const{return zip_impl(unique());} auto transform(const auto&f)const{ tensor<R,decltype(f(C()))>res(size()); if constexpr(vectorial<V>)fo(i,size())res[i]=(*this)[i].transform(f); else std::transform(this->begin(),this->end(),res.begin(),f); return res; } vec abs()const{return transform([](auto e){return e<0?-e:e;});} vec parity()const{return transform([](auto e){return e&1;});} auto pos_groups(C M=-1)const{ assert(min()>=0); if(M==-1)M=max(); vec<vec<ll>>res(M+1,0,0); fo(i,size())res[(*this)[i]].eb(i); return res; } auto matching_order(const vec&v)const{ assert(sort()==v.sort()); ll n=size(); auto c=(*this^v).zip(); vec<vec<ll>>g(n); vec<ll>res(size()); of(i,n)g[c[i+n]].eb(i); fo(i,n)res[i]=g[c[i]].pop_back(); return res; } ll inversion()const{ ll res=0; atcoder::fenwick_tree<int>s(size()); ef(sort_index(),i){ res+=s.sum(0,i); s.add(i,1); } return res; } ll inversion(const vec&v)const{return matching_order(v).inversion();} }; template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<tensor<sizeof...(A)-2,pack_back_t<A...>>>; vec(ll)->vec<ll>; template<class...A>void resizes(const array<ll,common_type_t<A...>::R+1>&s,A&...a){(apply([&](const auto&...b){a.resizes(b...); },s),...);} void lin(auto&...a){(cin>>...>>a);} void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<schrodinger(--n>0,space)),...);cout<<newline;} ll median_right_index(ll n){return n/2;} single_testcase void solve(){ LL(N); VL(N,a);--a; fe(a,e)e=(e>=median_right_index(N)); vec<ll>b(N); fo(i,N)b[i]=!parity(i); ll X=median_right_index(N); ll Y=a.inversion(b); // 10101010 or 1010101 if(even(N)){ auto pos1=a.pos_groups()[1]; // dp[i][j]:i個まで見て,00が登場済みかどうかの真偽値がjである列に1の位置を一致させるためのコストの最小値. vec dp(N+1,2,ll(oo)); dp[1][0]=pos1[0]; dp[1][1]=0; fo(i,1,N){ fo(j,2)if(dp[i][j]!=oo){ ll k=even(i)?i/2:i/2+!j; ll pre_x=j^odd(i); fo(x,2){ if(j&&(pre_x==0&&x==0))continue; ll nj=j|(pre_x==0&&x==0); if(x==0)amin(dp[i+1][nj],dp[i][j]); else amin(dp[i+1][nj],dp[i][j]+abs(i-pos1[k])); } } } amin(Y,dp[N].min()); } pp(X,Y); }}