結果
問題 |
No.1907 DETERMINATION
|
ユーザー |
|
提出日時 | 2025-03-14 12:35:34 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,310 ms / 4,000 ms |
コード長 | 3,022 bytes |
コンパイル時間 | 598 ms |
コンパイル使用メモリ | 82,668 KB |
実行使用メモリ | 80,576 KB |
最終ジャッジ日時 | 2025-03-14 12:37:00 |
合計ジャッジ時間 | 81,742 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 63 |
ソースコード
MOD = 998244353 def mod_inv(x, mod=MOD): return pow(x, mod - 2, mod) def hessenberg_reduction(m): N = len(m) for r in range(N - 2): piv = -1 for h in range(r + 1, N): if m[h][r] != 0: piv = h break if piv < 0: continue m[r + 1], m[piv] = m[piv], m[r + 1] for row in m: row[r + 1], row[piv] = row[piv], row[r + 1] rinv = mod_inv(m[r + 1][r]) for i in range(r + 2, N): n = (m[i][r] * rinv) % MOD for j in range(N): m[i][j] = (m[i][j] - m[r + 1][j] * n) % MOD m[j][r + 1] = (m[j][r + 1] + m[j][i] * n) % MOD return m def characteristic_poly(m): m = hessenberg_reduction(m) N = len(m) p = [[1]] for i in range(N): p.append([0] * (i + 2)) for j in range(i + 1): p[i + 1][j + 1] = (p[i + 1][j + 1] + p[i][j]) % MOD for j in range(i + 1): p[i + 1][j] = (p[i + 1][j] - p[i][j] * m[i][i]) % MOD betas = 1 for j in range(i - 1, -1, -1): betas = (betas * m[j + 1][j]) % MOD hb = (-m[j][i] * betas) % MOD for k in range(j + 1): p[i + 1][k] = (p[i + 1][k] + hb * p[j][k]) % MOD return p[N] def det_of_first_degree_mat(m0, m1): N = len(m0) mul_x = 0 dat_inv = 1 p = 0 while p < N: pivot = next((row for row in range(p, N) if m1[row][p] != 0), -1) if pivot < 0: mul_x += 1 if mul_x > N: return [0] * (N + 1) for row in range(p): v = m1[row][p] m1[row][p] = 0 for i in range(N): m0[i][p] = (m0[i][p] - v * m0[i][row]) % MOD for i in range(N): m0[i][p], m1[i][p] = m1[i][p], m0[i][p] continue if pivot != p: m1[p], m1[pivot] = m1[pivot], m1[p] m0[p], m0[pivot] = m0[pivot], m0[p] dat_inv = (-dat_inv) % MOD v = m1[p][p] vinv = mod_inv(v) dat_inv = (dat_inv * v) % MOD for col in range(N): m0[p][col] = (m0[p][col] * vinv) % MOD m1[p][col] = (m1[p][col] * vinv) % MOD for row in range(N): if row == p: continue v = m1[row][p] for col in range(N): m0[row][col] = (m0[row][col] - m0[p][col] * v) % MOD m1[row][col] = (m1[row][col] - m1[p][col] * v) % MOD p += 1 for vec in m0: for i in range(len(vec)): vec[i] = (-vec[i]) % MOD poly = characteristic_poly(m0) poly = [(x * dat_inv) % MOD for x in poly] poly = poly[mul_x:] poly += [0] * (N + 1 - len(poly)) return poly n = int(input()) m0 = [[int(x) for x in input().split()] for i in range(n)] m1 = [[int(x) for x in input().split()] for i in range(n)] res = det_of_first_degree_mat(m0, m1) print(*res, sep = "\n")