結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-14 12:35:34 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,310 ms / 4,000 ms |
| コード長 | 3,022 bytes |
| コンパイル時間 | 598 ms |
| コンパイル使用メモリ | 82,668 KB |
| 実行使用メモリ | 80,576 KB |
| 最終ジャッジ日時 | 2025-03-14 12:37:00 |
| 合計ジャッジ時間 | 81,742 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 63 |
ソースコード
MOD = 998244353
def mod_inv(x, mod=MOD):
return pow(x, mod - 2, mod)
def hessenberg_reduction(m):
N = len(m)
for r in range(N - 2):
piv = -1
for h in range(r + 1, N):
if m[h][r] != 0:
piv = h
break
if piv < 0:
continue
m[r + 1], m[piv] = m[piv], m[r + 1]
for row in m:
row[r + 1], row[piv] = row[piv], row[r + 1]
rinv = mod_inv(m[r + 1][r])
for i in range(r + 2, N):
n = (m[i][r] * rinv) % MOD
for j in range(N):
m[i][j] = (m[i][j] - m[r + 1][j] * n) % MOD
m[j][r + 1] = (m[j][r + 1] + m[j][i] * n) % MOD
return m
def characteristic_poly(m):
m = hessenberg_reduction(m)
N = len(m)
p = [[1]]
for i in range(N):
p.append([0] * (i + 2))
for j in range(i + 1):
p[i + 1][j + 1] = (p[i + 1][j + 1] + p[i][j]) % MOD
for j in range(i + 1):
p[i + 1][j] = (p[i + 1][j] - p[i][j] * m[i][i]) % MOD
betas = 1
for j in range(i - 1, -1, -1):
betas = (betas * m[j + 1][j]) % MOD
hb = (-m[j][i] * betas) % MOD
for k in range(j + 1):
p[i + 1][k] = (p[i + 1][k] + hb * p[j][k]) % MOD
return p[N]
def det_of_first_degree_mat(m0, m1):
N = len(m0)
mul_x = 0
dat_inv = 1
p = 0
while p < N:
pivot = next((row for row in range(p, N) if m1[row][p] != 0), -1)
if pivot < 0:
mul_x += 1
if mul_x > N:
return [0] * (N + 1)
for row in range(p):
v = m1[row][p]
m1[row][p] = 0
for i in range(N):
m0[i][p] = (m0[i][p] - v * m0[i][row]) % MOD
for i in range(N):
m0[i][p], m1[i][p] = m1[i][p], m0[i][p]
continue
if pivot != p:
m1[p], m1[pivot] = m1[pivot], m1[p]
m0[p], m0[pivot] = m0[pivot], m0[p]
dat_inv = (-dat_inv) % MOD
v = m1[p][p]
vinv = mod_inv(v)
dat_inv = (dat_inv * v) % MOD
for col in range(N):
m0[p][col] = (m0[p][col] * vinv) % MOD
m1[p][col] = (m1[p][col] * vinv) % MOD
for row in range(N):
if row == p:
continue
v = m1[row][p]
for col in range(N):
m0[row][col] = (m0[row][col] - m0[p][col] * v) % MOD
m1[row][col] = (m1[row][col] - m1[p][col] * v) % MOD
p += 1
for vec in m0:
for i in range(len(vec)):
vec[i] = (-vec[i]) % MOD
poly = characteristic_poly(m0)
poly = [(x * dat_inv) % MOD for x in poly]
poly = poly[mul_x:]
poly += [0] * (N + 1 - len(poly))
return poly
n = int(input())
m0 = [[int(x) for x in input().split()] for i in range(n)]
m1 = [[int(x) for x in input().split()] for i in range(n)]
res = det_of_first_degree_mat(m0, m1)
print(*res, sep = "\n")