結果
| 問題 |
No.880 Yet Another Segment Tree Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-16 23:47:20 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 12,745 bytes |
| コンパイル時間 | 12,902 ms |
| コンパイル使用メモリ | 402,428 KB |
| 実行使用メモリ | 22,920 KB |
| 最終ジャッジ日時 | 2025-03-16 23:48:01 |
| 合計ジャッジ時間 | 30,715 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 31 TLE * 1 -- * 5 |
ソースコード
fn main() {
let mut io = IO::new();
input!{ from io,
n: usize, q: usize,
l: [i64; n],
}
let mut seg = SegmentTreeBeats::<RangeUpdateChgcdMaxSum>::from(
&l.into_iter().map(Rucms::new).collect()
);
for _ in 0..q {
match io.scan::<i64>() {
1 => {
let (l, r, e) = io.scan::<(Usize1, usize, i64)>();
seg.update(l..r, Op::Update(e));
}
2 => {
let (l, r, e) = io.scan::<(Usize1, usize, i64)>();
seg.update(l..r, Op::Gcd(e));
}
3 => {
let (l, r) = io.scan::<(Usize1, usize)>();
io.println(seg.fold(l..r).max)
}
4 => {
let (l, r) = io.scan::<(Usize1, usize)>();
io.println(seg.fold(l..r).sum)
}
_ => unreachable!()
}
}
}
pub fn gcd(mut a: i64, mut b: i64) -> i64 {
while b != 0 {
a %= b;
std::mem::swap(&mut a, &mut b);
}
a
}
pub fn lcm(a: i64, b: i64) -> i64 {
if a == 0 && b == 0 {
0
} else {
(a / gcd(a, b)).saturating_mul(b)
}
}
#[derive(Clone, PartialEq)]
struct Rucms {
max: i64,
lcm: i64,
sum: i64,
size: i64,
fail: bool
}
impl Rucms {
fn new(val: i64) -> Self {
Self {
max: val,
lcm: val,
sum: val,
size: 1,
fail: false
}
}
}
impl Beats for Rucms {
fn is_failed(&self) -> bool { self.fail }
}
#[derive(Clone, PartialEq)]
enum Op {
Gcd(i64),
Update(i64),
None
}
struct RangeUpdateChgcdMaxSum;
impl Operation for RangeUpdateChgcdMaxSum {
type Val = Rucms;
type Eff = Op;
const ZERO_VAL: Self::Val = Rucms{
max: 0, lcm: 1, sum: 0, size: 0, fail: false
};
const ZERO_EFF: Self::Eff = Op::None;
fn op_val(left: &Self::Val, right: &Self::Val) -> Self::Val {
Self::Val {
max: left.max.max(right.max),
lcm: lcm(left.lcm, right.lcm),
sum: left.sum + right.sum,
size: left.size + right.size,
fail: left.fail | right.fail
}
}
fn op_eff(left: &Self::Eff, right: &Self::Eff) -> Self::Eff {
match (left, right) {
(left, Op::None) => left.clone(),
(Op::None, right) => right.clone(),
(_, Op::Update(_)) => right.clone(),
(Op::Gcd(a), Op::Gcd(b)) => Op::Gcd(gcd(*a, *b)),
(Op::Update(a), Op::Gcd(b)) => Op::Update(gcd(*a, *b))
}
}
fn effect(val: &Self::Val, eff: &Self::Eff) -> Self::Val {
let mut res = val.clone();
match *eff {
Op::Gcd(g) => {
if val.size == 1 {
res = Rucms::new(gcd(g, val.max));
} else if g % val.lcm != 0 {
res.fail = true;
}
}
Op::Update(u) => {
res.max = u;
res.lcm = u;
res.sum = u * res.size;
}
Op::None => ()
};
res
}
}
// ------------ Segment Tree Beats start ------------
pub trait Operation {
type Val: Clone + PartialEq + Beats;
type Eff: Clone + PartialEq;
const ZERO_VAL: Self::Val;
const ZERO_EFF: Self::Eff;
fn op_val(left: &Self::Val, right: &Self::Val) -> Self::Val;
fn op_eff(left: &Self::Eff, right: &Self::Eff) -> Self::Eff;
fn effect(val: &Self::Val, eff: &Self::Eff) -> Self::Val;
fn multiply(eff: &Self::Eff, _times: u32) -> Self::Eff { eff.clone() }
}
pub trait Beats {
fn is_failed(&self) -> bool;
}
#[derive(Clone)]
struct Node<T, E> {
val: T,
lazy: E,
}
impl<T, E> Node<T, E> {
fn new(val: T, lazy: E) -> Self {
Self { val, lazy }
}
}
pub struct SegmentTreeBeats<O: Operation> {
node: Box<[Node<O::Val, O::Eff>]>,
size: usize,
dep: u32,
}
impl<O: Operation> SegmentTreeBeats<O> {
pub fn new(n: usize) -> Self {
let size = n.next_power_of_two();
let dep = size.trailing_zeros() + 1;
let node = vec![Node::new(O::ZERO_VAL, O::ZERO_EFF); size << 1]
.into_boxed_slice();
Self { node, size, dep }
}
#[inline]
fn degree(&self, i: usize) -> u32 {
1 << (i.leading_zeros() + self.dep - 64)
}
fn effect(&mut self, i: usize, e: &O::Eff) {
self.node[i].val = O::effect(&self.node[i].val, &O::multiply(e, self.degree(i)));
if i <= self.size {
self.node[i].lazy = O::op_eff(&self.node[i].lazy, e);
if self.node[i].val.is_failed() {
self.push(i);
self.node[i].val = O::op_val(&self.node[i << 1].val, &self.node[(i << 1) + 1].val);
}
}
}
fn push(&mut self, i: usize) {
let e = std::mem::replace(&mut self.node[i].lazy, O::ZERO_EFF);
if e != O::ZERO_EFF && i <= self.size {
self.effect(i << 1, &e);
self.effect((i << 1) + 1, &e);
}
}
fn infuse(&mut self, mut i: usize) {
i >>= i.trailing_zeros();
while i > 1 {
i >>= 1;
self.node[i].val = O::op_val(&self.node[i << 1].val, &self.node[(i << 1) + 1].val);
}
}
fn infiltrate(&mut self, i: usize) {
if i < self.size << 1 {
let d = i.trailing_zeros();
for j in (d..self.dep).rev() {
self.push(i >> j);
}
}
}
pub fn update<Rng: std::ops::RangeBounds<usize>>(&mut self, rng: Rng, e: O::Eff) {
let rng = bounds_within(rng, self.size);
let mut l = rng.start + self.size;
let mut r = rng.end + self.size;
self.infiltrate(l);
self.infiltrate(r);
while l < r {
if l & 1 == 1 {
self.effect(l, &e);
l += 1;
}
if r & 1 == 1 {
r -= 1;
self.effect(r, &e);
}
l >>= 1;
r >>= 1;
}
self.infuse(rng.start + self.size);
self.infuse(rng.end + self.size);
}
pub fn fold<Rng: std::ops::RangeBounds<usize>>(&mut self, rng: Rng) -> O::Val {
let rng = bounds_within(rng, self.size);
let mut l = rng.start + self.size;
let mut r = rng.end + self.size;
self.infiltrate(l);
self.infiltrate(r);
let mut lx = O::ZERO_VAL;
let mut rx = O::ZERO_VAL;
while l < r {
if l & 1 == 1 {
lx = O::op_val(&lx, &self.node[l].val);
l += 1;
}
if r & 1 == 1 {
r -= 1;
rx = O::op_val(&self.node[r].val, &rx);
}
l >>= 1;
r >>= 1;
}
O::op_val(&lx, &rx)
}
}
impl<O: Operation> From<&Vec<O::Val>> for SegmentTreeBeats<O> {
fn from(arr: &Vec<O::Val>) -> Self {
let size = arr.len().next_power_of_two();
let dep = size.trailing_zeros() + 1;
let mut node = vec![Node::new(O::ZERO_VAL, O::ZERO_EFF); size << 1];
for i in 0..arr.len() {
node[i + size].val = arr[i].clone();
}
for i in (1..size).rev() {
node[i].val = O::op_val(&node[i << 1].val, &node[(i << 1) + 1].val);
}
Self { node: node.into_boxed_slice(), size, dep }
}
}
// ------------ Segment Tree Beats end ------------
pub fn bounds_within<R>(r: R, len: usize) -> std::ops::Range<usize>
where R: std::ops::RangeBounds<usize>
{
use std::ops::Bound;
let end = match r.end_bound() {
Bound::Included(&e) => e + 1,
Bound::Excluded(&e) => e,
Bound::Unbounded => len,
}
.min(len);
let start = match r.start_bound() {
Bound::Included(&s) => s,
Bound::Excluded(&s) => s + 1,
Bound::Unbounded => 0,
}
.min(end);
start..end
}
// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};
pub struct IO {
iter: std::str::SplitAsciiWhitespace<'static>,
buf: BufWriter<StdoutLock<'static>>,
}
impl IO {
pub fn new() -> Self {
let mut input = String::new();
std::io::stdin().read_to_string(&mut input).unwrap();
let input = Box::leak(input.into_boxed_str());
let out = Box::new(stdout());
IO {
iter: input.split_ascii_whitespace(),
buf: BufWriter::new(Box::leak(out).lock()),
}
}
fn scan_str(&mut self) -> &'static str {
self.iter.next().unwrap()
}
pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
<T as Scan>::scan(self)
}
pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
(0..n).map(|_| self.scan::<T>()).collect()
}
pub fn print<T: Print>(&mut self, x: T) {
<T as Print>::print(self, x);
}
pub fn println<T: Print>(&mut self, x: T) {
self.print(x);
self.print("\n");
}
pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
if let Some(v) = iter.next() {
self.print(v);
for v in iter {
self.print(delim);
self.print(v);
}
}
self.print("\n");
}
pub fn flush(&mut self) {
self.buf.flush().unwrap();
}
}
impl Default for IO {
fn default() -> Self {
Self::new()
}
}
pub trait Scan {
type Output;
fn scan(io: &mut IO) -> Self::Output;
}
macro_rules! impl_scan {
($($t:tt),*) => {
$(
impl Scan for $t {
type Output = Self;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().parse().unwrap()
}
}
)*
};
}
impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);
impl Scan for char {
type Output = char;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().next().unwrap()
}
}
pub enum Bytes {}
impl Scan for Bytes {
type Output = &'static [u8];
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().as_bytes()
}
}
pub enum Chars {}
impl Scan for Chars {
type Output = Vec<char>;
fn scan(s: &mut IO) -> Self::Output {
s.scan_str().chars().collect()
}
}
pub enum Usize1 {}
impl Scan for Usize1 {
type Output = usize;
fn scan(s: &mut IO) -> Self::Output {
s.scan::<usize>().wrapping_sub(1)
}
}
impl<T: Scan, U: Scan> Scan for (T, U) {
type Output = (T::Output, U::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
type Output = (T::Output, U::Output, V::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s))
}
}
impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
type Output = (T::Output, U::Output, V::Output, W::Output);
fn scan(s: &mut IO) -> Self::Output {
(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
}
}
pub trait Print {
fn print(w: &mut IO, x: Self);
}
macro_rules! impl_print_int {
($($t:ty),*) => {
$(
impl Print for $t {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x.to_string().as_bytes()).unwrap();
}
}
)*
};
}
impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);
impl Print for u8 {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(&[x]).unwrap();
}
}
impl Print for &[u8] {
fn print(w: &mut IO, x: Self) {
w.buf.write_all(x).unwrap();
}
}
impl Print for &str {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl Print for String {
fn print(w: &mut IO, x: Self) {
w.print(x.as_bytes());
}
}
impl<T: Print, U: Print> Print for (T, U) {
fn print(w: &mut IO, (x, y): Self) {
w.print(x);
w.print(" ");
w.print(y);
}
}
impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
fn print(w: &mut IO, (x, y, z): Self) {
w.print(x);
w.print(" ");
w.print(y);
w.print(" ");
w.print(z);
}
}
mod neboccoio_macro {
#[macro_export]
macro_rules! input {
(@start $io:tt @read @rest) => {};
(@start $io:tt @read @rest, $($rest: tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @rest mut $($rest:tt)*) => {
input!(@start $io @read @mut [mut] @rest $($rest)*)
};
(@start $io:tt @read @rest $($rest:tt)*) => {
input!(@start $io @read @mut [] @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
let $($mut)* $var = $io.scan_vec::<$kind>($len);
input!(@start $io @read @rest $($rest)*)
};
(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
let $($mut)* $var = $io.scan::<$kind>();
input!(@start $io @read @rest $($rest)*)
};
(from $io:tt $($rest:tt)*) => {
input!(@start $io @read @rest $($rest)*)
};
}
}
// ------------ io module end ------------