結果
問題 |
No.2176 LRM Question 1
|
ユーザー |
![]() |
提出日時 | 2025-03-20 18:44:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 158 ms / 2,000 ms |
コード長 | 985 bytes |
コンパイル時間 | 244 ms |
コンパイル使用メモリ | 82,336 KB |
実行使用メモリ | 213,340 KB |
最終ジャッジ日時 | 2025-03-20 18:44:50 |
合計ジャッジ時間 | 2,260 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 22 |
ソースコード
L, R, M = map(int, input().split()) if M == 1: print(0) exit() # Compute K and s_prev s_prev = [] current_fact = 1 # Represents (i-1)! % M initially, but modified in loop prod = 1 K = None # We need to compute up to K where prod becomes zero for i in range(1, M + 1): current_fact = (current_fact * i) % M prod = (prod * current_fact) % M if prod == 0: K = i break s_prev.append(prod) else: # In case M is a very large prime and K=M. But since we loop up to M steps, theoretically, K must be <= M. K = M + 1 # Not possible, but to handle edge cases s_prev = [] # Build prefix sum array prefix_sum = [0] current_sum = 0 for x in s_prev: current_sum = (current_sum + x) % M prefix_sum.append(current_sum) start = max(L, 1) end = min(R, K - 1) if start > end: total = 0 else: if end >= len(prefix_sum): end = len(prefix_sum) - 1 total = (prefix_sum[end] - prefix_sum[start - 1]) % M print(total % M)