結果
| 問題 | No.2176 LRM Question 1 | 
| コンテスト | |
| ユーザー |  lam6er | 
| 提出日時 | 2025-03-20 18:44:44 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 158 ms / 2,000 ms | 
| コード長 | 985 bytes | 
| コンパイル時間 | 244 ms | 
| コンパイル使用メモリ | 82,336 KB | 
| 実行使用メモリ | 213,340 KB | 
| 最終ジャッジ日時 | 2025-03-20 18:44:50 | 
| 合計ジャッジ時間 | 2,260 ms | 
| ジャッジサーバーID (参考情報) | judge5 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 22 | 
ソースコード
L, R, M = map(int, input().split())
if M == 1:
    print(0)
    exit()
# Compute K and s_prev
s_prev = []
current_fact = 1  # Represents (i-1)! % M initially, but modified in loop
prod = 1
K = None
# We need to compute up to K where prod becomes zero
for i in range(1, M + 1):
    current_fact = (current_fact * i) % M
    prod = (prod * current_fact) % M
    if prod == 0:
        K = i
        break
    s_prev.append(prod)
else:
    # In case M is a very large prime and K=M. But since we loop up to M steps, theoretically, K must be <= M.
    K = M + 1  # Not possible, but to handle edge cases
    s_prev = []
# Build prefix sum array
prefix_sum = [0]
current_sum = 0
for x in s_prev:
    current_sum = (current_sum + x) % M
    prefix_sum.append(current_sum)
start = max(L, 1)
end = min(R, K - 1)
if start > end:
    total = 0
else:
    if end >= len(prefix_sum):
        end = len(prefix_sum) - 1
    total = (prefix_sum[end] - prefix_sum[start - 1]) % M
print(total % M)
            
            
            
        