結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 18:49:56 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,394 bytes |
| コンパイル時間 | 142 ms |
| コンパイル使用メモリ | 82,768 KB |
| 実行使用メモリ | 129,108 KB |
| 最終ジャッジ日時 | 2025-03-20 18:52:25 |
| 合計ジャッジ時間 | 6,524 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 9 |
ソースコード
import math
def sieve(limit):
sieve = [True] * (limit + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.isqrt(limit)) + 1):
if sieve[i]:
sieve[i*i : limit+1 : i] = [False] * len(sieve[i*i : limit+1 : i])
primes = [i for i, val in enumerate(sieve) if val]
return primes
primes = sieve(10**6)
def is_prime(n):
if n < 2:
return False
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in bases:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def nth_root(n, b):
if n == 0:
return 0
low = 1
high = n
while low <= high:
mid = (low + high) // 2
try:
powered = mid ** b
except OverflowError:
powered = float('inf')
if powered == n:
return mid
elif powered < n:
low = mid + 1
else:
high = mid - 1
return None
def is_prime_power(n):
if n < 2:
return False
max_exp = n.bit_length()
for b in range(max_exp, 0, -1):
root = nth_root(n, b)
if root is None:
continue
try:
if root ** b == n and is_prime(root):
return True
except OverflowError:
continue
return False
Q = int(input())
for _ in range(Q):
N = int(input())
if N < 4:
print("No")
continue
found = False
max_a = 1
while (2 ** (max_a + 1)) <= (N - 2):
max_a += 1
max_a = min(max_a, 60)
for a in range(1, max_a + 1):
x = 2 ** a
if x > N - 2:
break
y = N - x
if y < 2:
continue
if is_prime_power(y):
print("Yes")
found = True
break
if found:
continue
if (N - 2) >= 2:
y = N - 2
if is_prime_power(y):
print("Yes")
continue
if (N - 3) >= 2:
y = N - 3
if is_prime_power(y):
print("Yes")
continue
for p in primes:
if p > N - 2:
break
y = N - p
if y < 2:
continue
if is_prime_power(y):
print("Yes")
found = True
break
if found:
continue
for p in primes:
x = p ** 2
if x > N - 2:
break
y = N - x
if y < 2:
continue
if is_prime_power(y):
print("Yes")
found = True
break
if found:
continue
for exponent in range(3, 61):
max_p = int((N - 2) ** (1.0 / exponent))
if max_p < 2:
continue
for p in primes:
if p > max_p:
break
x = p ** exponent
if x > N - 2:
continue
y = N - x
if y < 2:
continue
if is_prime_power(y):
print("Yes")
found = True
break
if found:
break
if found:
continue
print("No")
lam6er