結果

問題 No.315 世界のなんとか3.5
ユーザー lam6er
提出日時 2025-03-20 18:57:31
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,254 bytes
コンパイル時間 175 ms
コンパイル使用メモリ 82,508 KB
実行使用メモリ 92,288 KB
最終ジャッジ日時 2025-03-20 18:58:36
合計ジャッジ時間 5,213 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 12 TLE * 1 -- * 23
権限があれば一括ダウンロードができます

ソースコード

diff #

MOD = 10**9 + 7

def subtract_one(s):
    s_list = list(s)
    i = len(s_list) - 1
    while i >= 0 and s_list[i] == '0':
        s_list[i] = '9'
        i -= 1
    if i < 0:
        return '0'  # shouldn't happen per problem constraints
    s_list[i] = str(int(s_list[i]) - 1)
    if s_list[i] == '0' and i == 0 and len(s_list) > 1:
        # Check if leading zero and length >1
        # return the string as is, the DP will handle leading zeros
        pass
    return ''.join(s_list)

def count_aho(upper):
    n = len(upper)
    current_dp = [[[[0]*2 for _ in range(2)] for __ in range(2)] for ___ in range(3)]
    current_dp[0][0][1][1] = 1  # sum_mod, has_three, leading_zero, tight

    for i in range(n):
        next_dp = [[[[0]*2 for _ in range(2)] for __ in range(2)] for ___ in range(3)]
        limit = int(upper[i])
        for sum_mod in range(3):
            for has_t in range(2):
                for leading in range(2):
                    for tight in range(2):
                        cnt = current_dp[sum_mod][has_t][leading][tight]
                        if cnt == 0:
                            continue
                        max_d = limit if tight else 9
                        for d in range(0, max_d+1):
                            new_tight = tight and (d == max_d)
                            new_leading = leading and (d == 0)
                            new_sum = sum_mod
                            new_has = has_t
                            if not new_leading:
                                new_sum = (sum_mod + d) % 3
                                if d == 3:
                                    new_has = 1
                            else:
                                new_sum = 0
                                new_has = 0

                            next_dp[new_sum][new_has][new_leading][new_tight] = (
                                next_dp[new_sum][new_has][new_leading][new_tight] + cnt
                            ) % MOD
        current_dp = next_dp

    total = 0
    for sum_mod in range(3):
        for has_t in range(2):
            for leading in range(2):
                for tight in range(2):
                    if leading:
                        continue
                    if sum_mod == 0 or has_t == 1:
                        total = (total + current_dp[sum_mod][has_t][leading][tight]) % MOD
    return total

def count_aho_div_p(upper, P):
    n = len(upper)
    current_dp = [[[[[0]*2 for _ in range(2)] for __ in range(P)] for ___ in range(2)] for ____ in range(3)]
    current_dp[0][0][0][1][1] = 1  # sum_mod, has_3, mod_p, leading, tight

    for i in range(n):
        next_dp = [[[[[0]*2 for _ in range(2)] for __ in range(P)] for ___ in range(2)] for ____ in range(3)]
        limit = int(upper[i])
        for sum_mod in range(3):
            for has_t in range(2):
                for mod_p in range(P):
                    for leading in range(2):
                        for tight in range(2):
                            cnt = current_dp[sum_mod][has_t][mod_p][leading][tight]
                            if cnt == 0:
                                continue
                            max_d = limit if tight else 9
                            for d in range(0, max_d+1):
                                new_tight = tight and (d == max_d)
                                new_leading = leading and (d == 0)
                                new_sum = sum_mod
                                new_has = has_t
                                new_mod = mod_p
                                if not new_leading:
                                    new_sum = (sum_mod + d) % 3
                                    if d ==3:
                                        new_has = 1
                                    new_mod = (mod_p * 10 + d) % P
                                else:
                                    new_sum = 0
                                    new_has = 0
                                    new_mod = 0  # still leading zero, mod is 0

                                next_dp[new_sum][new_has][new_mod][new_leading][new_tight] = (
                                    next_dp[new_sum][new_has][new_mod][new_leading][new_tight] + cnt
                                ) % MOD
        current_dp = next_dp

    total = 0
    for sum_mod in range(3):
        for has_t in range(2):
            for mod_p in range(P):
                for leading in range(2):
                    for tight in range(2):
                        if leading:
                            continue
                        if (sum_mod ==0 or has_t ==1) and mod_p ==0:
                            total = (total + current_dp[sum_mod][has_t][mod_p][leading][tight]) % MOD
    return total

def solve():
    import sys
    input = sys.stdin.read().split()
    A = input[0]
    B = input[1]
    P = int(input[2])

    A_minus_1 = subtract_one(A)

    fB = count_aho(B)
    fA_1 = count_aho(A_minus_1) if A != '0' else 0
    total_aho = (fB - fA_1) % MOD

    gB = count_aho_div_p(B, P)
    gA_1 = count_aho_div_p(A_minus_1, P) if A != '0' else 0
    total_aho_div_p = (gB - gA_1) % MOD

    ans = (total_aho - total_aho_div_p) % MOD
    print(ans)

if __name__ == '__main__':
    solve()
0