結果
問題 |
No.315 世界のなんとか3.5
|
ユーザー |
![]() |
提出日時 | 2025-03-20 18:57:31 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,254 bytes |
コンパイル時間 | 175 ms |
コンパイル使用メモリ | 82,508 KB |
実行使用メモリ | 92,288 KB |
最終ジャッジ日時 | 2025-03-20 18:58:36 |
合計ジャッジ時間 | 5,213 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 12 TLE * 1 -- * 23 |
ソースコード
MOD = 10**9 + 7 def subtract_one(s): s_list = list(s) i = len(s_list) - 1 while i >= 0 and s_list[i] == '0': s_list[i] = '9' i -= 1 if i < 0: return '0' # shouldn't happen per problem constraints s_list[i] = str(int(s_list[i]) - 1) if s_list[i] == '0' and i == 0 and len(s_list) > 1: # Check if leading zero and length >1 # return the string as is, the DP will handle leading zeros pass return ''.join(s_list) def count_aho(upper): n = len(upper) current_dp = [[[[0]*2 for _ in range(2)] for __ in range(2)] for ___ in range(3)] current_dp[0][0][1][1] = 1 # sum_mod, has_three, leading_zero, tight for i in range(n): next_dp = [[[[0]*2 for _ in range(2)] for __ in range(2)] for ___ in range(3)] limit = int(upper[i]) for sum_mod in range(3): for has_t in range(2): for leading in range(2): for tight in range(2): cnt = current_dp[sum_mod][has_t][leading][tight] if cnt == 0: continue max_d = limit if tight else 9 for d in range(0, max_d+1): new_tight = tight and (d == max_d) new_leading = leading and (d == 0) new_sum = sum_mod new_has = has_t if not new_leading: new_sum = (sum_mod + d) % 3 if d == 3: new_has = 1 else: new_sum = 0 new_has = 0 next_dp[new_sum][new_has][new_leading][new_tight] = ( next_dp[new_sum][new_has][new_leading][new_tight] + cnt ) % MOD current_dp = next_dp total = 0 for sum_mod in range(3): for has_t in range(2): for leading in range(2): for tight in range(2): if leading: continue if sum_mod == 0 or has_t == 1: total = (total + current_dp[sum_mod][has_t][leading][tight]) % MOD return total def count_aho_div_p(upper, P): n = len(upper) current_dp = [[[[[0]*2 for _ in range(2)] for __ in range(P)] for ___ in range(2)] for ____ in range(3)] current_dp[0][0][0][1][1] = 1 # sum_mod, has_3, mod_p, leading, tight for i in range(n): next_dp = [[[[[0]*2 for _ in range(2)] for __ in range(P)] for ___ in range(2)] for ____ in range(3)] limit = int(upper[i]) for sum_mod in range(3): for has_t in range(2): for mod_p in range(P): for leading in range(2): for tight in range(2): cnt = current_dp[sum_mod][has_t][mod_p][leading][tight] if cnt == 0: continue max_d = limit if tight else 9 for d in range(0, max_d+1): new_tight = tight and (d == max_d) new_leading = leading and (d == 0) new_sum = sum_mod new_has = has_t new_mod = mod_p if not new_leading: new_sum = (sum_mod + d) % 3 if d ==3: new_has = 1 new_mod = (mod_p * 10 + d) % P else: new_sum = 0 new_has = 0 new_mod = 0 # still leading zero, mod is 0 next_dp[new_sum][new_has][new_mod][new_leading][new_tight] = ( next_dp[new_sum][new_has][new_mod][new_leading][new_tight] + cnt ) % MOD current_dp = next_dp total = 0 for sum_mod in range(3): for has_t in range(2): for mod_p in range(P): for leading in range(2): for tight in range(2): if leading: continue if (sum_mod ==0 or has_t ==1) and mod_p ==0: total = (total + current_dp[sum_mod][has_t][mod_p][leading][tight]) % MOD return total def solve(): import sys input = sys.stdin.read().split() A = input[0] B = input[1] P = int(input[2]) A_minus_1 = subtract_one(A) fB = count_aho(B) fA_1 = count_aho(A_minus_1) if A != '0' else 0 total_aho = (fB - fA_1) % MOD gB = count_aho_div_p(B, P) gA_1 = count_aho_div_p(A_minus_1, P) if A != '0' else 0 total_aho_div_p = (gB - gA_1) % MOD ans = (total_aho - total_aho_div_p) % MOD print(ans) if __name__ == '__main__': solve()