結果
問題 |
No.1521 Playing Musical Chairs Alone
|
ユーザー |
![]() |
提出日時 | 2025-03-20 20:20:55 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 857 ms / 2,000 ms |
コード長 | 1,338 bytes |
コンパイル時間 | 176 ms |
コンパイル使用メモリ | 82,220 KB |
実行使用メモリ | 76,796 KB |
最終ジャッジ日時 | 2025-03-20 20:22:38 |
合計ジャッジ時間 | 10,003 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
MOD = 10**9 + 7 def multiply(a, b, mod): n = len(a) result = [[0]*n for _ in range(n)] for i in range(n): for k in range(n): if a[i][k] == 0: continue for j in range(n): result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % mod return result def matrix_power(mat, power, mod): n = len(mat) result = [[0]*n for _ in range(n)] # Identity matrix for i in range(n): result[i][i] = 1 current = [row[:] for row in mat] while power > 0: if power % 2 == 1: result = multiply(result, current, mod) current = multiply(current, current, mod) power //= 2 return result def main(): N, K, L = map(int, input().split()) matrix = [[0] * N for _ in range(N)] for i in range(N): for j in range(N): d = (j - i) % N if d == 0: count = L // N else: if d > L: count = 0 else: count = (L - d) // N + 1 matrix[i][j] = count % MOD # Compute matrix^K mat_k = matrix_power(matrix, K, MOD) # The answer is the first row of mat_k (since we start at 0) for j in range(N): print(mat_k[0][j] % MOD) if __name__ == "__main__": main()