結果
| 問題 |
No.2320 Game World for PvP
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:29:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 98 ms / 2,000 ms |
| コード長 | 4,225 bytes |
| コンパイル時間 | 165 ms |
| コンパイル使用メモリ | 82,188 KB |
| 実行使用メモリ | 78,444 KB |
| 最終ジャッジ日時 | 2025-03-20 20:30:41 |
| 合計ジャッジ時間 | 3,526 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 30 |
ソースコード
import sys
from collections import deque
class Edge:
def __init__(self, to, rev, capacity):
self.to = to
self.rev = rev
self.capacity = capacity
class Dinic:
def __init__(self, n):
self.size = n
self.graph = [[] for _ in range(n)]
def add_edge(self, fr, to, capacity):
forward = Edge(to, len(self.graph[to]), capacity)
backward = Edge(fr, len(self.graph[fr]), 0)
self.graph[fr].append(forward)
self.graph[to].append(backward)
def bfs_level(self, s, t, level):
q = deque()
level[:] = [-1] * self.size
level[s] = 0
q.append(s)
while q:
v = q.popleft()
for edge in self.graph[v]:
if edge.capacity > 0 and level[edge.to] == -1:
level[edge.to] = level[v] + 1
q.append(edge.to)
if edge.to == t:
return
def dfs_flow(self, v, t, flow, level, ptr):
if v == t:
return flow
while ptr[v] < len(self.graph[v]):
edge = self.graph[v][ptr[v]]
if edge.capacity > 0 and level[v] < level[edge.to]:
min_flow = min(flow, edge.capacity)
result = self.dfs_flow(edge.to, t, min_flow, level, ptr)
if result > 0:
edge.capacity -= result
self.graph[edge.to][edge.rev].capacity += result
return result
ptr[v] += 1
return 0
def max_flow(self, s, t):
flow = 0
level = [-1] * self.size
while True:
self.bfs_level(s, t, level)
if level[t] == -1:
return flow
ptr = [0] * self.size
while True:
f = self.dfs_flow(s, t, float('inf'), level, ptr)
if f == 0:
break
flow += f
level = [-1] * self.size
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx]); idx +=1
S = int(input[idx]); idx +=1
T = int(input[idx]); idx +=1
E = list(map(int, input[idx:idx+S]))
E = [x-1 for x in E]
idx += S
R = list(map(int, input[idx:idx+T]))
R = [x-1 for x in R]
idx += T
C = []
for _ in range(N):
row = list(map(int, input[idx:idx+N]))
idx += N
C.append(row)
E_set = set(E)
R_set = set(R)
for u in E_set:
if u in R_set:
print(0)
return
U = []
for u in range(N):
if u not in E_set and u not in R_set:
U.append(u)
# Compute fixed_sum
fixed_sum = 0
# sum pairs in E
for i in range(len(E)):
for j in range(i+1, len(E)):
u = E[i]
v = E[j]
fixed_sum += C[u][v]
for i in range(len(R)):
for j in range(i+1, len(R)):
u = R[i]
v = R[j]
fixed_sum += C[u][v]
# For each undecided user, compute a_E and a_R
a_E = []
a_R = []
for u in U:
ae = 0
for e in E:
ae += C[u][e]
ar = 0
for r in R:
ar += C[u][r]
a_E.append(ae)
a_R.append(ar)
sum_a_plus_aR = sum( ae + ar for ae, ar in zip(a_E, a_R) )
sum_undecided_C_all = 0
M = len(U)
for i in range(M):
for j in range(i+1, M):
u = U[i]
v = U[j]
sum_undecided_C_all += C[u][v]
# Build Dinic's graph
node_count = M + 2
source = 0
sink = M +1
dinic = Dinic(node_count)
for i in range(M):
u_node = i +1
dinic.add_edge(source, u_node, a_E[i])
dinic.add_edge(u_node, sink, a_R[i])
for i in range(M):
u = U[i]
u_node = i +1
for j in range(M):
if i == j:
continue
v = U[j]
v_node = j +1
dinic.add_edge(u_node, v_node, C[u][v])
max_flow = dinic.max_flow(source, sink)
total = fixed_sum + (sum_a_plus_aR + sum_undecided_C_all) - max_flow
print(total)
if __name__ == '__main__':
main()
lam6er