結果
問題 |
No.2327 Inversion Sum
|
ユーザー |
![]() |
提出日時 | 2025-03-20 20:30:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 304 ms / 2,000 ms |
コード長 | 2,696 bytes |
コンパイル時間 | 200 ms |
コンパイル使用メモリ | 82,420 KB |
実行使用メモリ | 111,604 KB |
最終ジャッジ日時 | 2025-03-20 20:32:02 |
合計ジャッジ時間 | 5,650 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
import bisect MOD = 998244353 def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 fixed = [] p_set = set() k_set = set() for _ in range(M): P = int(input[ptr]) ptr += 1 K = int(input[ptr]) ptr += 1 fixed.append((P, K)) p_set.add(P) k_set.add(K) # Precompute factorials max_fact = N fact = [1] * (max_fact + 1) for i in range(1, max_fact + 1): fact[i] = fact[i - 1] * i % MOD inv_2 = (MOD + 1) // 2 # 499122177 # Compute A (inversions among fixed elements) fixed_sorted = sorted(fixed, key=lambda x: x[1]) # sort by K P_list = [p for p, k in fixed_sorted] A = 0 if M > 0: class FenwickTree: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 2) def update(self, idx, delta=1): while idx <= self.n: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res max_P = N bit = FenwickTree(max_P) for i, p in enumerate(P_list): cnt = bit.query(p) A = (A + i - cnt) % MOD bit.update(p) T = N - M sum_A = A * fact[T] % MOD # Compute sum_B sum_contrib = 0 S = [] for x in range(1, N + 1): if x not in p_set: S.append(x) S_sorted = sorted(S) T_list = [] for x in range(1, N + 1): if x not in k_set: T_list.append(x) T_sorted = sorted(T_list) for p, k in fixed: # compute R_p and S_p (count in T_sorted) pos = bisect.bisect_left(T_sorted, k) S_p = pos R_p = len(T_sorted) - bisect.bisect_right(T_sorted, k) # compute C_less_p and C_greater_p in S_sorted C_less = bisect.bisect_left(S_sorted, p) C_greater = len(S_sorted) - bisect.bisect_right(S_sorted, p) term = (R_p * C_less + S_p * C_greater) % MOD sum_contrib = (sum_contrib + term) % MOD if T == 0: sum_B = 0 else: sum_B = sum_contrib * fact[T - 1] % MOD # Compute sum_C if T <= 1: sum_C = 0 else: part1 = T * (T - 1) % MOD part1 = part1 * inv_2 % MOD part2 = fact[T] * inv_2 % MOD sum_C = part1 * part2 % MOD total = (sum_A + sum_B + sum_C) % MOD print(total) if __name__ == "__main__": main()