結果
| 問題 |
No.720 行列のできるフィボナッチ数列道場 (2)
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:31:27 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 42 ms / 2,000 ms |
| コード長 | 1,868 bytes |
| コンパイル時間 | 155 ms |
| コンパイル使用メモリ | 82,668 KB |
| 実行使用メモリ | 61,236 KB |
| 最終ジャッジ日時 | 2025-03-20 20:32:33 |
| 合計ジャッジ時間 | 1,818 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
MOD = 10**9 + 7
def multiply(a, b):
n = len(a)
p = len(b)
m = len(b[0]) if p > 0 else 0
result = [[0] * m for _ in range(n)]
for i in range(n):
for k in range(p):
if a[i][k] == 0:
continue
for j in range(m):
result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD
return result
def matrix_power(mat, power):
size = len(mat)
result = [[0]*size for _ in range(size)]
for i in range(size):
result[i][i] = 1
current = [row[:] for row in mat]
while power > 0:
if power % 2 == 1:
result = multiply(result, current)
current = multiply(current, current)
power = power // 2
return result
def main():
import sys
N, M = map(int, sys.stdin.readline().split())
if M == 0:
print(0)
return
# Calculate F_m and F_{m-1}
if M == 1:
Fm = 1
Fm_1 = 0
else:
fib_mat = matrix_power([[1, 1], [1, 0]], M-1)
Fm = fib_mat[0][0] % MOD
Fm_1 = fib_mat[0][1] % MOD
# Compute a = L_m = Fm + 2*Fm_1
a = (Fm + 2 * Fm_1) % MOD
# Compute b = -(-1)^m mod MOD
if M % 2 == 0:
b = (-1) % MOD # which is MOD-1
else:
b = 1 # because (-1)^(m+1) when m is odd
# If n is 1, return Fm
if N == 1:
print(Fm % MOD)
return
# Construct the transformation matrix T
T = [
[1, a, b],
[0, a, b],
[0, 1, 0]
]
# Compute T^(n-1)
power = N-1
Tn = matrix_power(T, power)
# Initial vector [S1, G1, G0] = [Fm, Fm, 0]
s_initial = Fm % MOD
g_initial = Fm % MOD
gp_initial = 0
# Multiply Tn with the initial vector
s_new = (Tn[0][0] * s_initial + Tn[0][1] * g_initial + Tn[0][2] * gp_initial) % MOD
print(s_new % MOD)
if __name__ == '__main__':
main()
lam6er