結果
問題 |
No.720 行列のできるフィボナッチ数列道場 (2)
|
ユーザー |
![]() |
提出日時 | 2025-03-20 20:31:27 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 42 ms / 2,000 ms |
コード長 | 1,868 bytes |
コンパイル時間 | 155 ms |
コンパイル使用メモリ | 82,668 KB |
実行使用メモリ | 61,236 KB |
最終ジャッジ日時 | 2025-03-20 20:32:33 |
合計ジャッジ時間 | 1,818 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
MOD = 10**9 + 7 def multiply(a, b): n = len(a) p = len(b) m = len(b[0]) if p > 0 else 0 result = [[0] * m for _ in range(n)] for i in range(n): for k in range(p): if a[i][k] == 0: continue for j in range(m): result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD return result def matrix_power(mat, power): size = len(mat) result = [[0]*size for _ in range(size)] for i in range(size): result[i][i] = 1 current = [row[:] for row in mat] while power > 0: if power % 2 == 1: result = multiply(result, current) current = multiply(current, current) power = power // 2 return result def main(): import sys N, M = map(int, sys.stdin.readline().split()) if M == 0: print(0) return # Calculate F_m and F_{m-1} if M == 1: Fm = 1 Fm_1 = 0 else: fib_mat = matrix_power([[1, 1], [1, 0]], M-1) Fm = fib_mat[0][0] % MOD Fm_1 = fib_mat[0][1] % MOD # Compute a = L_m = Fm + 2*Fm_1 a = (Fm + 2 * Fm_1) % MOD # Compute b = -(-1)^m mod MOD if M % 2 == 0: b = (-1) % MOD # which is MOD-1 else: b = 1 # because (-1)^(m+1) when m is odd # If n is 1, return Fm if N == 1: print(Fm % MOD) return # Construct the transformation matrix T T = [ [1, a, b], [0, a, b], [0, 1, 0] ] # Compute T^(n-1) power = N-1 Tn = matrix_power(T, power) # Initial vector [S1, G1, G0] = [Fm, Fm, 0] s_initial = Fm % MOD g_initial = Fm % MOD gp_initial = 0 # Multiply Tn with the initial vector s_new = (Tn[0][0] * s_initial + Tn[0][1] * g_initial + Tn[0][2] * gp_initial) % MOD print(s_new % MOD) if __name__ == '__main__': main()