結果
| 問題 | No.720 行列のできるフィボナッチ数列道場 (2) | 
| コンテスト | |
| ユーザー |  lam6er | 
| 提出日時 | 2025-03-20 20:31:27 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 42 ms / 2,000 ms | 
| コード長 | 1,868 bytes | 
| コンパイル時間 | 155 ms | 
| コンパイル使用メモリ | 82,668 KB | 
| 実行使用メモリ | 61,236 KB | 
| 最終ジャッジ日時 | 2025-03-20 20:32:33 | 
| 合計ジャッジ時間 | 1,818 ms | 
| ジャッジサーバーID (参考情報) | judge5 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 20 | 
ソースコード
MOD = 10**9 + 7
def multiply(a, b):
    n = len(a)
    p = len(b)
    m = len(b[0]) if p > 0 else 0
    result = [[0] * m for _ in range(n)]
    for i in range(n):
        for k in range(p):
            if a[i][k] == 0:
                continue
            for j in range(m):
                result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD
    return result
def matrix_power(mat, power):
    size = len(mat)
    result = [[0]*size for _ in range(size)]
    for i in range(size):
        result[i][i] = 1
    current = [row[:] for row in mat]
    while power > 0:
        if power % 2 == 1:
            result = multiply(result, current)
        current = multiply(current, current)
        power = power // 2
    return result
def main():
    import sys
    N, M = map(int, sys.stdin.readline().split())
    if M == 0:
        print(0)
        return
    # Calculate F_m and F_{m-1}
    if M == 1:
        Fm = 1
        Fm_1 = 0
    else:
        fib_mat = matrix_power([[1, 1], [1, 0]], M-1)
        Fm = fib_mat[0][0] % MOD
        Fm_1 = fib_mat[0][1] % MOD
    # Compute a = L_m = Fm + 2*Fm_1
    a = (Fm + 2 * Fm_1) % MOD
    # Compute b = -(-1)^m mod MOD
    if M % 2 == 0:
        b = (-1) % MOD  # which is MOD-1
    else:
        b = 1  # because (-1)^(m+1) when m is odd
    # If n is 1, return Fm
    if N == 1:
        print(Fm % MOD)
        return
    # Construct the transformation matrix T
    T = [
        [1, a, b],
        [0, a, b],
        [0, 1, 0]
    ]
    # Compute T^(n-1)
    power = N-1
    Tn = matrix_power(T, power)
    # Initial vector [S1, G1, G0] = [Fm, Fm, 0]
    s_initial = Fm % MOD
    g_initial = Fm % MOD
    gp_initial = 0
    # Multiply Tn with the initial vector
    s_new = (Tn[0][0] * s_initial + Tn[0][1] * g_initial + Tn[0][2] * gp_initial) % MOD
    print(s_new % MOD)
if __name__ == '__main__':
    main()
            
            
            
        