結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:44:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 89 ms / 5,000 ms |
| コード長 | 2,798 bytes |
| コンパイル時間 | 217 ms |
| コンパイル使用メモリ | 82,384 KB |
| 実行使用メモリ | 81,684 KB |
| 最終ジャッジ日時 | 2025-03-20 20:45:06 |
| 合計ジャッジ時間 | 3,880 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
import sys
from collections import deque
MOD = 10**9 + 7
def build_transition_matrix(n):
size = n + 1
T = [[0] * size for _ in range(size)]
# Row 0: sum of first N elements
for j in range(n):
T[0][j] = 1
# Rows 1 to n-1: shifted
for i in range(1, n):
T[i][i-1] = 1
# Row n: sum of first N and 1 in column n
for j in range(n):
T[n][j] = 1
T[n][n] = 1
return T
def matrix_mult(a, b, mod):
n = len(a)
m = len(b[0])
p = len(b)
result = [[0] * m for _ in range(n)]
for i in range(n):
for k in range(p):
if a[i][k] == 0:
continue
for j in range(m):
result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % mod
return result
def matrix_pow(mat, power, mod):
n = len(mat)
result = [[0] * n for _ in range(n)]
for i in range(n):
result[i][i] = 1 # Identity matrix
while power > 0:
if power % 2 == 1:
result = matrix_mult(result, mat, mod)
mat = matrix_mult(mat, mat, mod)
power //= 2
return result
def matrix_vector_mult(mat, vec, mod):
size = len(vec)
result = [0] * size
for i in range(size):
for j in range(size):
result[i] = (result[i] + mat[i][j] * vec[j]) % mod
return result
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
K = int(input[ptr])
ptr += 1
A = list(map(int, input[ptr:ptr+N]))
ptr += N
if K <= N:
F = A[K-1] % MOD
S = sum(A[:K]) % MOD
else:
sum_initial = sum(A) % MOD
if N <= 30:
# Matrix exponentiation approach
reversed_A = list(reversed(A))
initial = [a % MOD for a in reversed_A]
initial.append(sum_initial % MOD)
T = build_transition_matrix(N)
power = K - N
T_power = matrix_pow(T, power, MOD)
result_state = matrix_vector_mult(T_power, initial, MOD)
F = result_state[0] % MOD
S = result_state[-1] % MOD
else:
# Deque approach
deque_list = deque()
for a in A:
deque_list.append(a % MOD)
deque_list.append(sum_initial % MOD)
steps_needed = K - (N + 1)
S = (sum_initial * 2) % MOD
for _ in range(steps_needed):
current_last = deque_list[-1]
first = deque_list.popleft()
new_F = (2 * current_last - first) % MOD
new_F = (new_F + MOD) % MOD # Ensure non-negative
S = (S + new_F) % MOD
deque_list.append(new_F)
F = deque_list[-1] % MOD
print(F, S)
if __name__ == "__main__":
main()
lam6er