結果
| 問題 |
No.562 超高速一人かるた small
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:51:45 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 89 ms / 3,000 ms |
| コード長 | 2,959 bytes |
| コンパイル時間 | 159 ms |
| コンパイル使用メモリ | 82,380 KB |
| 実行使用メモリ | 76,760 KB |
| 最終ジャッジ日時 | 2025-03-20 20:51:56 |
| 合計ジャッジ時間 | 2,411 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
import sys
MOD = 10**9 + 7
from bisect import bisect_left, bisect_right
def main():
N = int(sys.stdin.readline())
S = [sys.stdin.readline().strip() for _ in range(N)]
# Compute pairwise l(x, y) for x != y
l_matrix = [[0] * N for _ in range(N)]
for x in range(N):
for y in range(N):
if x == y:
continue
s_x = S[x]
s_y = S[y]
pos = 0
while pos < len(s_x) and pos < len(s_y) and s_x[pos] == s_y[pos]:
pos += 1
l_matrix[x][y] = pos + 1
# Precompute combinations C(n, k)
max_comb = 20
comb = [[0] * (max_comb + 1) for _ in range(max_comb + 1)]
comb[0][0] = 1
for n in range(1, max_comb + 1):
comb[n][0] = 1
for k in range(1, n + 1):
comb[n][k] = (comb[n-1][k] + comb[n-1][k-1]) % MOD
# Precompute factorials and inverse factorials
fact = [1] * (21)
for i in range(1, 21):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (21)
inv_fact[20] = pow(fact[20], MOD - 2, MOD)
for i in range(19, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
def perm(a, b):
if a < 0 or b < 0 or a < b:
return 0
return fact[a] * inv_fact[a - b] % MOD
# Precompute sum_for_s[x][s]
sum_for_s = [[0] * (N + 2) for _ in range(N)]
for x in range(N):
l_list = []
for y in range(N):
if y != x:
l_list.append(l_matrix[x][y])
sorted_l = sorted(l_list)
M = len(l_list)
for s in range(1, N + 1):
if s == 1:
sum_for_s[x][s] = 1
continue
k = s - 1
if k > M:
sum_for_s[x][s] = 0
continue
unique = sorted(list(set(sorted_l)))
current_sum = 0
for l in unique:
cnt_le = bisect_right(sorted_l, l)
cnt_lt = bisect_left(sorted_l, l)
if cnt_le < k:
c_le = 0
else:
c_le = comb[cnt_le][k]
if cnt_lt < k:
c_lt = 0
else:
c_lt = comb[cnt_lt][k]
delta = (c_le - c_lt) % MOD
current_sum = (current_sum + l * delta) % MOD
sum_for_s[x][s] = current_sum
# Process each K from 1 to N
for K in range(1, N + 1):
ans = 0
for m in range(1, K + 1):
s_size = N - (m - 1)
if s_size < 1 or s_size > N:
continue
total = 0
for x in range(N):
total = (total + sum_for_s[x][s_size]) % MOD
factor = (fact[m-1] * perm(N - m, K - m)) % MOD
contribution = (factor * total) % MOD
ans = (ans + contribution) % MOD
print(ans % MOD)
if __name__ == "__main__":
main()
lam6er