結果
| 問題 |
No.2176 LRM Question 1
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:55:39 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 137 ms / 2,000 ms |
| コード長 | 985 bytes |
| コンパイル時間 | 157 ms |
| コンパイル使用メモリ | 82,648 KB |
| 実行使用メモリ | 212,860 KB |
| 最終ジャッジ日時 | 2025-03-20 20:56:12 |
| 合計ジャッジ時間 | 2,018 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
L, R, M = map(int, input().split())
if M == 1:
print(0)
exit()
# Compute K and s_prev
s_prev = []
current_fact = 1 # Represents (i-1)! % M initially, but modified in loop
prod = 1
K = None
# We need to compute up to K where prod becomes zero
for i in range(1, M + 1):
current_fact = (current_fact * i) % M
prod = (prod * current_fact) % M
if prod == 0:
K = i
break
s_prev.append(prod)
else:
# In case M is a very large prime and K=M. But since we loop up to M steps, theoretically, K must be <= M.
K = M + 1 # Not possible, but to handle edge cases
s_prev = []
# Build prefix sum array
prefix_sum = [0]
current_sum = 0
for x in s_prev:
current_sum = (current_sum + x) % M
prefix_sum.append(current_sum)
start = max(L, 1)
end = min(R, K - 1)
if start > end:
total = 0
else:
if end >= len(prefix_sum):
end = len(prefix_sum) - 1
total = (prefix_sum[end] - prefix_sum[start - 1]) % M
print(total % M)
lam6er