結果
| 問題 | 
                            No.1311 Reverse Permutation Index
                             | 
                    
| コンテスト | |
| ユーザー | 
                             lam6er
                         | 
                    
| 提出日時 | 2025-03-20 21:08:38 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 42 ms / 1,500 ms | 
| コード長 | 1,985 bytes | 
| コンパイル時間 | 217 ms | 
| コンパイル使用メモリ | 82,308 KB | 
| 実行使用メモリ | 54,392 KB | 
| 最終ジャッジ日時 | 2025-03-20 21:09:24 | 
| 合計ジャッジ時間 | 989 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 6 | 
ソースコード
class FenwickTree:
    def __init__(self, size):
        self.n = size
        self.tree = [0] * (self.n + 1)  # 1-based indexing
    def update(self, idx, delta):
        # Convert to 1-based index
        idx += 1
        while idx <= self.n:
            self.tree[idx] += delta
            idx += idx & -idx
    def query(self, idx):
        # Sum from 0 to idx (0-based)
        idx += 1
        res = 0
        while idx > 0:
            res += self.tree[idx]
            idx -= idx & -idx
        return res
    def query_range(self, a, b):
        if a > b:
            return 0
        return self.query(b) - (self.query(a - 1) if a > 0 else 0)
def main():
    import sys
    N, S = map(int, sys.stdin.readline().split())
    
    # Precompute factorials up to S-1!
    max_fact = S
    factorial = [1] * (max_fact)
    for i in range(1, max_fact):
        factorial[i] = factorial[i-1] * i
    
    # Step 1: Generate permutation from N
    def get_permutation(n, s):
        perm = []
        available = list(range(s))
        for i in range(s):
            remaining = s - i - 1
            fact = factorial[remaining] if remaining >=0 else 1
            k = n // fact
            selected = available[k]
            perm.append(selected)
            del available[k]
            n = n % fact
        return perm
    
    P = get_permutation(N, S)
    
    # Step 2: Compute inverse permutation
    inv_P = [0] * S
    for i in range(S):
        inv_P[P[i]] = i
    
    # Step 3: Compute the index of inv_P
    ft = FenwickTree(S)
    for i in range(S):
        ft.update(i, 1)
    
    m = 0
    for i in range(S):
        current = inv_P[i]
        remaining = S - i - 1
        fact = factorial[remaining] if remaining >= 0 else 1
        # Number of elements less than 'current' that are still available
        count = ft.query_range(0, current - 1)
        m += count * fact
        ft.update(current, -1)
    
    print(m)
if __name__ == '__main__':
    main()
            
            
            
        
            
lam6er