結果
問題 | No.2211 Frequency Table of GCD |
ユーザー |
![]() |
提出日時 | 2025-03-20 21:11:18 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 172 ms / 2,000 ms |
コード長 | 1,163 bytes |
コンパイル時間 | 149 ms |
コンパイル使用メモリ | 82,296 KB |
実行使用メモリ | 110,188 KB |
最終ジャッジ日時 | 2025-03-20 21:11:31 |
合計ジャッジ時間 | 5,934 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 |
ソースコード
MOD = 998244353N, M = map(int, input().split())A = list(map(int, input().split()))# Step 1: Compute the frequency array cntcnt = [0] * (M + 1)for x in A:cnt[x] += 1# Step 2: Compute c[d] for each d, which is the count of elements divisible by dc = [0] * (M + 1)for d in range(1, M + 1):for m in range(d, M + 1, d):c[d] += cnt[m]# Precompute powers of 2 up to the maximum possible c[d] (which is N)max_pow = max(c)pow2 = [1] * (max_pow + 1)for i in range(1, max_pow + 1):pow2[i] = (pow2[i - 1] * 2) % MOD# Step 3: Compute g[d] = 2^c[d] - 1 mod MODg = [0] * (M + 1)for d in range(1, M + 1):if c[d] == 0:gd = 0else:gd = (pow2[c[d]] - 1) % MODg[d] = gd# Step 4: Compute f[d] using inclusion-exclusion by processing d in reverse orderf = [0] * (M + 1)for d in range(M, 0, -1):sum_multiples = 0m = 2 * dwhile m <= M:sum_multiples = (sum_multiples + f[m]) % MODm += df[d] = (g[d] - sum_multiples) % MOD# Ensure non-negativeif f[d] < 0:f[d] += MOD# Output the result for each k from 1 to Mfor k in range(1, M + 1):print(f[k])