結果

問題 No.3071 Double Speedrun
ユーザー deuteridayo
提出日時 2025-03-21 22:46:51
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,193 ms / 6,000 ms
コード長 7,091 bytes
コンパイル時間 6,248 ms
コンパイル使用メモリ 333,880 KB
実行使用メモリ 6,020 KB
最終ジャッジ日時 2025-03-21 22:47:19
合計ジャッジ時間 25,616 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
struct edge;
using graph = vector<vector<edge>>;
#define endl '\n'
constexpr int INF = 1<<30;
constexpr lint INF64 = 1LL<<61;
constexpr lint mod107 = 1e9+7;
using mint107 = modint1000000007;
constexpr long mod = 998244353;
using mint = modint998244353;
lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}
lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}
lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); }
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[20000001]; bool firstCallnCr = true; 
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(r<0)return 0;
if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define rrep(i, x) for(int i = x-1; i >= 0; i--)
#define vec vector
#define pb push_back
#define eb emplace_back
#define se second
#define fi first
#define al(x) x.begin(),x.end()
#define ral(x) x.rbegin(),x.rend()
unsigned long Rand() {
    static random_device seed;
    static mt19937_64 engine(seed());
    return engine();
}

struct Point {
    lint x, y; int quad;
    Point(lint X, lint Y) {
        x = X;
        y = Y;
        quad = getQuad();
    }
    int getQuad() {
        if(x >= 0) {
            if(y >= 0) return 1;
            else return 4;
        } else {
            if(y >= 0) return 2;
            else return 3;
        }
    }
};

bool operator<(const Point &left, const Point &right) {
    if(left.quad == right.quad) {
        return left.y * right.x < left.x * right.y;
    } else {
        return left.quad < right.quad;
    }
}

struct Frac {
    lint upper, lower;
    Frac() { Frac(0,1); }
    Frac(lint u, lint l) {
        assert(l != 0);
        if(u <= 0 && l < 0) { upper = -u; lower = -l; } 
        else { upper = u; lower = l; }
        reduction();
    }

    Frac(lint u) { upper = u;  lower = 1;  } 

    void reduction() {
        if(upper != 0) {
            lint g = gcd(abs(upper), abs(lower));
            upper /= g; lower /= g;
            if(lower < 0) {lower *= -1;  upper *= -1; }
        } else {
            lower = 1; 
        }
    }

    Frac operator+(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower + lower*other.upper;
        return Frac(U, L);
    }

    Frac operator-(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper*other.lower - lower*other.upper;
        upper = U; lower = L;
        return Frac(U, L);
    }

    bool operator<=(const Frac &other) {
        return upper*other.lower <= lower*other.upper;
    }

    Frac operator*(const Frac &other) {
        lint L = lower * other.lower;
        lint U = upper * other.upper;
        return Frac(U, L);
    }

    Frac operator/(const Frac &other) {
        assert(other.upper != 0);
        lint L = lower * other.upper;
        lint U = upper * other.lower;
        return Frac(U, L);
    }
};

bool operator<(const Frac &left, const Frac &right) {
    llint L = left.upper;
    L *= right.lower;
    llint R = right.upper;
    R *= left.lower;
    return L < R;
}

lint extGCD(lint a, lint b, lint &x, lint &y) {
    if (b == 0) {
        x = 1;  y = 0;
        return a;
    }
    lint d = extGCD(b, a%b, y, x);
    y -= a/b * x;
    return d;
}

struct edge{
    edge(lint v, lint c = 1) {to = v, cost = c;}
    lint to;
    lint cost;
};

vector<lint>dijkstra(int s, graph &g) {
    vec<lint>ret(g.size(), INF64);
    priority_queue<pair<lint, lint>>que;
    que.push({-0, s});
    ret[s] = 0;
    vec<bool>went(g.size(), false);
    while(!que.empty()) {
        auto q = que.top();
        que.pop();
        if(went[q.second]) continue;
        went[q.second] = true;
        ret[q.second] = -q.first;
        for(auto&& e: g[q.second]) {
            if(ret[e.to] > -q.first + e.cost) {
                ret[e.to] = -q.first + e.cost;
                que.push({-ret[e.to], e.to});
            }
        }
    }
    return ret;
}

int main(){
    int  H, W;
    cin >> H >> W;
    vec<string>S(H);
    rep(i, H) cin >> S[i];
    vec dp(H, vec<mint>(801));
    dp[1][401] = 1;

    vec<int>dx = {0, 1};
    vec<int>dy = {1, 0};
    for(int i = 1; i <= H+W-3; i++) {
        vec ndp(H, vec<mint>(801));
        for(int ax = 1; ax < H; ax++) {
            size_t ay = i - ax;
            if(ay >= W) continue;
        // cerr << ax << " " << ay << endl;
        
                for(int kt = -i; kt <= i; kt++) {
                    if(kt == 0) continue;
                    size_t bx = ax - kt;
                    size_t by = ay + kt;
                //    cerr << ax << "  " << ay << " " << bx << " " << by << endl;
                    if(bx >= H || by >= W) continue;
                    int k = kt + 400;

                    rep(ad, 2) {
                        rep(bd, 2) {
                            if(k + ad - bd < 0 || k+ad-bd > 800) continue; 

                            size_t nax = ax + dx[ad];
                            size_t nay = ay + dy[ad];
                            if(nax >= H || nay >= W) continue;

                            size_t nbx = bx + dx[bd];
                            size_t nby = by + dy[bd];
                            if(nbx >= H || nby >= W) continue;

                            if(S[nax][nay] == '#') continue;
                            if(S[nbx][nby] == '#') continue;
                            ndp[nax][k + ad - bd] += dp[ax][k];
                       //  cerr << nax << " " << nay << " " << k << " " << k+ad-bd << " " << dp[ax][k].val() << " " << dp[nax][k + ad - bd].val()<<endl;
                        }
                    }
                }
            }
        dp = ndp;
    }
    
    cout << dp[H-1][400].val() << endl;

}

0