結果

問題 No.2090 否定論理積と充足可能性
ユーザー eQe
提出日時 2025-03-24 03:17:41
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,323 bytes
コンパイル時間 6,415 ms
コンパイル使用メモリ 333,372 KB
実行使用メモリ 7,324 KB
最終ジャッジ日時 2025-03-24 03:17:49
合計ジャッジ時間 7,172 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
namespace my{
#define eb emplace_back
#define done(...) return pp(__VA_ARGS__)
#define FO(n) for(ll ij=n;ij-->0;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a)
#define schrodinger(p,c) (p?c:remove_cvref_t<decltype(c)>{})
#define base_operator(op,type) auto operator op(const type&v)const{auto copy=*this;return copy op##=v;}
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cerr<<endl;cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
constexpr auto range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};}
constexpr auto range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};}
const string newline{char(10)};
const string space{char(32)};
constexpr ll size2(auto x){x|=1;ll r=0;while(x>0)x>>=1,++r;return r;}
constexpr auto at2(auto x,auto i){return x>>i&1;}
auto max(auto...a){return max(initializer_list<common_type_t<decltype(a)...>>{a...});}
auto mod(auto a,auto b){return(a%=b)<0?a+b:a;}

template<class A,class B>struct pair{
  A a;B b;
  pair()=default;
  pair(A a,B b):a(a),b(b){}
  pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
  auto operator<=>(const pair&)const=default;
  pair operator+(const pair&p)const{return{a+p.a,b+p.b};}
  friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;}
  friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;}
};

template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>;

template<class V>concept vectorial=is_base_of_v<vector<typename remove_cvref_t<V>::value_type>,remove_cvref_t<V>>;
template<class V>constexpr int rank(){if constexpr(vectorial<V>)return rank<typename V::value_type>()+1;else return 0;}
template<class T>struct core_t_helper{using core_t=T;};
template<vectorial V>struct core_t_helper<V>{using core_t=typename core_t_helper<typename V::value_type>::core_t;};
template<class T>using core_t=core_t_helper<T>::core_t;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){ll n=v.size();fo(i,n)o<<v[i]<<schrodinger(i<n-1,vectorial<V>?newline:space);return o;}

template<class V>struct vec;
template<int rank,class T>struct hvec_helper{using type=vec<typename hvec_helper<rank-1,T>::type>;};
template<class T>struct hvec_helper<0,T>{using type=T;};
template<int rank,class T>using hvec=typename hvec_helper<rank,T>::type;

template<class V>struct vec:vector<V>{
  static constexpr int R=rank<vec<V>>();
  using C=core_t<V>;
  using vector<V>::vector;
  vec(const vector<V>&v){vector<V>::operator=(v);}
  vec(const auto&...a)requires(sizeof...(a)>=3){resizes(a...);}
  void resizes(const auto&...a){*this=make(a...);}
  static auto make(ll n,const auto&...a){if constexpr(sizeof...(a)==1)return vec<C>(n,array{a...}[0]);else return vec<decltype(make(a...))>(n,make(a...));}

  vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
  vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;}
  vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;}
  base_operator(^,vec)
  base_operator(+,vec)
  base_operator(-,vec)

  vec&operator++(){fe(*this,e)++e;return*this;}
  vec&operator--(){fe(*this,e)--e;return*this;}

  ll size()const{return vector<V>::size();}

  auto scan(const auto&f)const{
    pair<C,bool>r{};
    fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;
    return r;
  }
  auto max()const{return scan([](auto&a,auto b){a<b?a=b:0;}).a;}

  inline ll h()const requires(R==2){return size();}
};
template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>;
vec(ll)->vec<ll>;

void lin(auto&...a){(cin>>...>>a);}
auto sinen(const string&b="a"){string s;lin(s);vec<ll>r;fe(s,e)r.eb(b.size()==1?e-b[0]:b.find_first_of(e));return r;}
auto sinen(ll n,const string&b="a"){vec<vec<ll>>r;fo(n)r.eb(sinen(b));return r;}
void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<schrodinger(--n>0,space)),...);cout<<newline;}

template<class T>concept modulary=requires(T t){t.mod();};
template<class T>using safe_integer=conditional_t<modulary<T>,ll,T>;

template<class T>struct pow_linear:vec<T>{pow_linear(ll a,ll n):vec<T>(n+1,1){fo(i,n)(*this)[i+1]=(*this)[i]*a;}};

template<class T>struct pow2_linear:pow_linear<T>{pow2_linear(ll n):pow_linear<T>(2,n){}};

template<class T=ll>T pow2(ll n){using U=safe_integer<T>;static const auto v=pow2_linear<U>(size2(numeric_limits<U>::max()));return v[n];}

single_testcase
void solve(){
  ll N=6;
  auto s=sinen(N,"0");

  auto ok=[&](ll S){
    fo(i,N)fo(j,N)if((s[i]==s[j])&&(at2(S,i)!=at2(S,j)))return 0;
    return 1;
  };

  auto sa=[&](ll S){
    ll a=at2(S,0),b=at2(S,1),c=at2(S,2),d=at2(S,3),e=at2(S,4),f=at2(S,5);
    ll g=!(a&b),h=!(g&c),i=!(d&e),j=!(i&f);
    return !(h&j);
  };

  fo(S,pow2(N)){
    if(!ok(S))continue;
    if(sa(S))done("YES");
  }
  pp("NO");
}}
0