結果
問題 | No.136 Yet Another GCD Problem |
ユーザー |
|
提出日時 | 2025-03-24 03:23:07 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 5,000 ms |
コード長 | 8,963 bytes |
コンパイル時間 | 7,023 ms |
コンパイル使用メモリ | 334,720 KB |
実行使用メモリ | 7,324 KB |
最終ジャッジ日時 | 2025-03-24 03:23:16 |
合計ジャッジ時間 | 7,496 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 39 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a) #define schrodinger(p,c) (p?c:remove_cvref_t<decltype(c)>{}) #define base_operator(op,type) auto operator op(const type&v)const{auto copy=*this;return copy op##=v;} #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cerr<<endl;cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; using ull=unsigned long long; using ulll=__uint128_t; using lll=__int128_t; istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;} ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);} istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;} ostream&operator<<(ostream&o,const lll&x){return o<<(x<0?"-":"")<<ulll(x>0?x:-x);} constexpr auto range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} constexpr auto range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};} const string newline{char(10)}; const string space{char(32)}; constexpr auto abs(auto x){return x<0?-x:x;} constexpr auto pow(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;} template<class T,class U>common_type_t<T,U>gcd(T a,U b){return b?gcd(b,a%b):abs(a);} auto gcd(auto...a){common_type_t<decltype(a)...>r=0;((r=gcd(r,a)),...);return r;} auto mod(auto a,auto b){return(a%=b)<0?a+b:a;} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>; template<class V>concept vectorial=is_base_of_v<vector<typename remove_cvref_t<V>::value_type>,remove_cvref_t<V>>; template<class V>constexpr int rank(){if constexpr(vectorial<V>)return rank<typename V::value_type>()+1;else return 0;} template<class T>struct core_t_helper{using core_t=T;}; template<vectorial V>struct core_t_helper<V>{using core_t=typename core_t_helper<typename V::value_type>::core_t;}; template<class T>using core_t=core_t_helper<T>::core_t; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){ll n=v.size();fo(i,n)o<<v[i]<<schrodinger(i<n-1,vectorial<V>?newline:space);return o;} template<class V>struct vec; template<int rank,class T>struct hvec_helper{using type=vec<typename hvec_helper<rank-1,T>::type>;}; template<class T>struct hvec_helper<0,T>{using type=T;}; template<int rank,class T>using hvec=typename hvec_helper<rank,T>::type; template<class V>struct vec:vector<V>{ static constexpr int R=rank<vec<V>>(); using C=core_t<V>; using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} vec(const auto&...a)requires(sizeof...(a)>=3){resizes(a...);} void resizes(const auto&...a){*this=make(a...);} static auto make(ll n,const auto&...a){if constexpr(sizeof...(a)==1)return vec<C>(n,array{a...}[0]);else return vec<decltype(make(a...))>(n,make(a...));} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;} base_operator(^,vec) base_operator(+,vec) base_operator(-,vec) vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} ll size()const{return vector<V>::size();} template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;} auto transform(const auto&f)const{ hvec<R,decltype(f(C()))>res(size()); if constexpr(vectorial<V>)fo(i,size())res[i]=(*this)[i].transform(f); else std::transform(this->begin(),this->end(),res.begin(),f); return res; } auto rle()const{vec<pair<V,ll>>r;fe(*this,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;} auto rce()const{return sort().rle();} auto as()const{return transform([](const auto&e){return e.a;});} }; template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>; vec(ll)->vec<ll>; auto pack_vec(const auto&...a){return vec<common_type_t<decltype(a)...>>{a...};} void lin(auto&...a){(cin>>...>>a);} void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<schrodinger(--n>0,space)),...);cout<<newline;} template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} ll rand(){static ll x=495;x^=x<<7;x^=x>>9;return x;} ll rand(ll l,ll r=0){if(l>r)swap(l,r);return rand()%(r-l)+l;} struct montgomery64{ using modular=montgomery64; using i64=__int64_t; using u64=__uint64_t; using u128=__uint128_t; static inline u64 N; static inline u64 N_inv; static inline u64 R2; static int set_mod(u64 N){ if(modular::N==N)return 0; assert(N<(1ULL<<63)); assert(N&1); modular::N=N; R2=-u128(N)%N; N_inv=N; fo(5)N_inv*=2-N*N_inv; assert(N*N_inv==1); return 0; } static inline int init=set_mod(998244353); static u64 mod(){return N;} u64 a; montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)N+N)*R2)){} static u64 reduce(const u128&T){ u128 r=(T+u128(u64(T)*-N_inv)*N)>>64; return r>=N?r-N:r; } auto&operator+=(const modular&b){if((a+=b.a)>=N)a-=N;return*this;} auto&operator-=(const modular&b){if(i64(a-=b.a)<0)a+=N;return*this;} auto&operator*=(const modular&b){a=reduce(u128(a)*b.a);return*this;} auto&operator/=(const modular&b){*this*=b.inv();return*this;} friend auto operator+(const modular&a,const modular&b){return modular{a}+=b;} friend auto operator-(const modular&a,const modular&b){return modular{a}-=b;} friend auto operator*(const modular&a,const modular&b){return modular{a}*=b;} friend auto operator/(const modular&a,const modular&b){return modular{a}/=b;} friend bool operator==(const modular&a,const modular&b){return a.a==b.a;} auto operator-()const{return modular{}-modular{*this};} modular pow(u128 n)const{ modular r{1},x{*this}; while(n){ if(n&1)r*=x; x*=x; n>>=1; } return r; } modular inv()const{u64 a=val(),b=N,u=1,v=0;assert(gcd(a,b)==1);while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return u;} u64 val()const{return reduce(a);} friend istream&operator>>(istream&i,montgomery64&b){ll t;i>>t;b=t;return i;} friend ostream&operator<<(ostream&o,const montgomery64&b){return o<<b.val();} }; template<class T>T one(T n){return n>0;} void sort(auto&...a){auto v=pack_vec(a...).sort();ll i=0;((a=v[i++]),...);} bool miller_rabin(ll n,vec<ll>as){ ll d=n-1; while(~d&1)d>>=1; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; modular y=modular(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return modular::set_mod(pre_mod),0; } return modular::set_mod(pre_mod),1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin(n,{2,7,61}); return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022}); } ll pollard_rho(ll n){ if(~n&1)return 2; if(is_prime(n))return n; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular R,one=1; auto f=[&](const modular&x){return x*x+R;}; while(1){ modular x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; fo(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return modular::set_mod(pre_mod),g; } } auto factorize(ll n){ assert(n>0); auto f=[](auto&f,ll m){ if(m==1)return vec<ll>{}; ll d=pollard_rho(m); return d==m?vec<ll>{d}:f(f,d)^f(f,m/d); }; return f(f,n).rce(); } auto divisors(const vec<pair<ll,ll>>&prime_exponent){ vec<ll>r{1}; for(auto[p,e]:prime_exponent){ ll sz=size(r); for(ll t=p;e;--e,t*=p)fo(i,sz)r.eb(r[i]*t); } return sort(r); } vec<ll>divisors(ll n){return divisors(factorize(n));} single_testcase void solve(){ LL(K,N); pp(divisors(K).end()[-2]); }}