結果
問題 |
No.3073 Fraction Median
|
ユーザー |
|
提出日時 | 2025-03-24 19:06:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,542 bytes |
コンパイル時間 | 1,352 ms |
コンパイル使用メモリ | 119,640 KB |
実行使用メモリ | 14,904 KB |
最終ジャッジ日時 | 2025-03-24 19:06:28 |
合計ジャッジ時間 | 9,942 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 4 TLE * 1 -- * 13 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:89:42: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 89 | for (int i = 1; i < n + 1; i++) scanf("%d", w + i); | ~~~~~^~~~~~~~~~~~~
ソースコード
#include <iostream> #include <sstream> #include <cstring> #include <string> #include <algorithm> #include <cmath> #include <map> #include <set> #include <vector> #include <queue> #include <unordered_set> #include <unordered_map> #include <bitset> #include <ctime> #include <assert.h> #include <deque> #include <list> #include <stack> #include <numeric> #include <iomanip> using namespace std; typedef pair<long long, int> pli; typedef pair<int, long long> pil; typedef pair<long long , long long> pll; typedef pair<int, int> pii; typedef pair<double, double> pdd; typedef pair<int, pii> piii; typedef pair<int, long long > pil; typedef pair<long long, pii> plii; typedef pair<double, int> pdi; typedef long long ll; typedef unsigned long long ull; typedef pair<ull, ull> puu; typedef long double ld; const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333; const long double EPS = 1e-13; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; // int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; // int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1}; int n, m, cnt; int w[N]; vector<ll> num; ll res; ll lowbit(ll x) { return x & -x; } ll lcm(ll a, ll b) { return a / __gcd(a, b) * b; } inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; } inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; } inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; } inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); } bool check(ld mid) { ll c = 0, t = (ll)n * (n - 1) / 2 - 1; for (int i = 1; i <= n; i++) { if (mid <= 1) { if (i == n || (ld)w[i] / w[n] >= mid) continue; int l = i + 1, r = n; while (l < r) { int m = l + r >> 1; ld v = (ld)w[i] / w[m]; if (v < mid) r = m; else l = m + 1; } c += n - l + 1; } else { c += n - i; if (i == 1 || (ld)w[i] / w[i - 1] >= mid) continue; int l = 1, r = i - 1; while (l < r) { int m = l + r >> 1; ld v = (ld)w[i] / w[m]; if (v < mid) r = m; else l = m + 1; } c += i - 1 - l + 1; } } return c <= t; } int main() { cin >> n; for (int i = 1; i < n + 1; i++) scanf("%d", w + i); sort(w + 1, w + n + 1); ld pl = 0, pr = 1e9; while (abs(pr - pl) > EPS) { ld mid = (pl + pr) / 2; if (check(mid)) pl = mid; else pr = mid; } if (abs(pl - 1) < EPS) { puts("1 1"); return 0; } if (pl < 1) { for (int i = n; i; i--) { int l = 1, r = i - 1; while (l < r) { int mid = l + r + 1 >> 1; ld v = (ld)w[mid] / w[i]; if (v <= pl) l = mid; else r = mid - 1; } if (abs((ld)w[l] / w[i] - pl) < EPS) { int g = __gcd(w[l], w[i]); printf("%d %d\n", w[l], w[i]); return 0; } if (l != i && abs((ld)w[l + 1] / w[i] - pl) < EPS) { int g = __gcd(w[l + 1], w[i]); printf("%d %d\n", w[l + 1], w[i]); return 0; } } } else { for (int i = n; i; i--) { int l = 1, r = i - 1; while (l < r) { int mid = l + r + 1 >> 1; ld v = (ld)w[i] / w[mid]; if (v >= pl) l = mid; else r = mid - 1; } if (abs((ld)w[i] / w[l] - pl) < EPS) { int g = __gcd(w[l], w[i]); printf("%d %d\n", w[i], w[l]); return 0; } if (l != i && abs((ld)w[i] / w[l + 1] - pl) < EPS) { int g = __gcd(w[l + 1], w[i]); printf("%d %d\n", w[i], w[l + 1]); return 0; } } } // cout << pl << endl; return 0; }