結果
| 問題 |
No.8120 Aoki's Present for Takahashi
|
| コンテスト | |
| ユーザー |
highlighter
|
| 提出日時 | 2025-03-24 22:38:12 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,193 bytes |
| コンパイル時間 | 5,740 ms |
| コンパイル使用メモリ | 333,316 KB |
| 実行使用メモリ | 29,812 KB |
| 最終ジャッジ日時 | 2025-04-01 23:11:36 |
| 合計ジャッジ時間 | 9,692 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | WA * 20 |
ソースコード
#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
struct Barrett {
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
u32 m;
u64 im;
Barrett() : m(), im() {}
Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
constexpr inline i64 quo(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? x - 1 : x;
}
constexpr inline i64 rem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? r + m : r;
}
constexpr inline pair<i64, int> quorem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
if (m <= r) return {x - 1, r + m};
return {x, r};
}
constexpr inline i64 pow(u64 n, i64 p) {
u32 a = rem(n), r = m == 1 ? 0 : 1;
while (p) {
if (p & 1) r = rem(u64(r) * a);
a = rem(u64(a) * a);
p >>= 1;
}
return r;
}
};
#define PRIME_POWER_BINOMIAL_M_MAX ((1LL << 30) - 1)
#define PRIME_POWER_BINOMIAL_N_MAX 20000000
struct prime_power_binomial {
int p, q, M;
vector<int> fac, ifac, inv;
int delta;
Barrett bm, bp;
prime_power_binomial(int _p, int _q) : p(_p), q(_q) {
assert(1 < p && p <= PRIME_POWER_BINOMIAL_M_MAX);
assert(_q > 0);
long long m = 1;
while (_q--) {
m *= p;
assert(m <= PRIME_POWER_BINOMIAL_M_MAX);
}
M = m;
bm = Barrett(M), bp = Barrett(p);
enumerate();
delta = (p == 2 && q >= 3) ? 1 : M - 1;
}
void enumerate() {
int MX = min<int>(M, PRIME_POWER_BINOMIAL_N_MAX + 10);
fac.resize(MX);
ifac.resize(MX);
inv.resize(MX);
fac[0] = ifac[0] = inv[0] = 1;
fac[1] = ifac[1] = inv[1] = 1;
for (int i = 2; i < MX; i++) {
if (i % p == 0) {
fac[i] = fac[i - 1];
fac[i + 1] = bm.rem(1LL * fac[i - 1] * (i + 1));
i++;
} else {
fac[i] = bm.rem(1LL * fac[i - 1] * i);
}
}
ifac[MX - 1] = bm.pow(fac[MX - 1], M / p * (p - 1) - 1);
for (int i = MX - 2; i > 1; --i) {
if (i % p == 0) {
ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
ifac[i - 1] = ifac[i];
i--;
} else {
ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
}
}
}
long long Lucas(long long n, long long m) {
int res = 1;
while (n) {
int n0, m0;
tie(n, n0) = bp.quorem(n);
tie(m, m0) = bp.quorem(m);
if (n0 < m0) return 0;
res = bm.rem(1LL * res * fac[n0]);
int buf = bm.rem(1LL * ifac[n0 - m0] * ifac[m0]);
res = bm.rem(1LL * res * buf);
}
return res;
}
long long C(long long n, long long m) {
if (n < m || n < 0 || m < 0) return 0;
if (q == 1) return Lucas(n, m);
long long r = n - m;
int e0 = 0, eq = 0, i = 0;
int res = 1;
while (n) {
res = bm.rem(1LL * res * fac[bm.rem(n)]);
res = bm.rem(1LL * res * ifac[bm.rem(m)]);
res = bm.rem(1LL * res * ifac[bm.rem(r)]);
n = bp.quo(n);
m = bp.quo(m);
r = bp.quo(r);
int eps = n - m - r;
e0 += eps;
if (e0 >= q) return 0;
if (++i >= q) eq += eps;
}
if (eq & 1) res = bm.rem(1LL * res * delta);
res = bm.rem(1LL * res * bm.pow(p, e0));
return res;
}
};
// constraints:
// (M <= 1e7 and max(N) <= 1e18) or (M < 2^30 and max(N) <= 2e7)
struct arbitrary_mod_binomial {
long long mod;
vector<int> M;
vector<prime_power_binomial> cs;
arbitrary_mod_binomial(long long md) : mod(md) {
assert(1 <= md);
assert(md <= PRIME_POWER_BINOMIAL_M_MAX);
for (long long i = 2; i * i <= md; i++) {
if (md % i == 0) {
int j = 0, k = 1;
while (md % i == 0) md /= i, j++, k *= i;
M.push_back(k);
cs.emplace_back(i, j);
assert(M.back() == cs.back().M);
}
}
if (md != 1) {
M.push_back(md);
cs.emplace_back(md, 1);
}
assert(M.size() == cs.size());
}
long long C(long long n, long long m) {
if (mod == 1) return 0;
vector<long long> rem, d;
for (int i = 0; i < (int)cs.size(); i++) {
rem.push_back(cs[i].C(n, m));
d.push_back(M[i]);
}
return atcoder::crt(rem, d).first;
}
};
#define int long long
signed main(){
cin.tie(0)->ios::sync_with_stdio(0);
arbitrary_mod_binomial k(998243353);
int TT,T;
cin >> TT >> T;
for(int ii=0;ii<T;ii++){
if(ii==T-1){
cout << -1 << endl;
continue;
}
int N,M;
cin >> N >> M;
//MCN
cout << k.C(M,N) << '\n';
}
}
highlighter