結果
問題 |
No.1212 Second Path
|
ユーザー |
![]() |
提出日時 | 2025-03-26 15:50:31 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,700 bytes |
コンパイル時間 | 244 ms |
コンパイル使用メモリ | 82,240 KB |
実行使用メモリ | 348,492 KB |
最終ジャッジ日時 | 2025-03-26 15:51:37 |
合計ジャッジ時間 | 10,516 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 3 |
other | TLE * 1 -- * 44 |
ソースコード
import sys from sys import stdin from collections import deque sys.setrecursionlimit(1 << 25) def input(): return sys.stdin.readline() def main(): N = int(input()) edges = [[] for _ in range(N+1)] # 1-based for _ in range(N-1): u, v, w = map(int, input().split()) edges[u].append((v, w)) edges[v].append((u, w)) # Preprocess for LCA LOG = 20 parent = [[-1]*(N+1) for _ in range(LOG)] depth = [0]*(N+1) # BFS to set up parent[0] and depth root = 1 q = deque() q.append(root) parent[0][root] = -1 while q: u = q.popleft() for v, w in edges[u]: if parent[0][v] == -1 and v != root: parent[0][v] = u depth[v] = depth[u] + 1 q.append(v) # Fill parent table for k in range(1, LOG): for v in range(1, N+1): if parent[k-1][v] != -1: parent[k][v] = parent[k-1][parent[k-1][v]] def lca(u, v): if depth[u] < depth[v]: u, v = v, u # Bring u to the same depth as v for k in range(LOG-1, -1, -1): if depth[u] - (1 << k) >= depth[v]: u = parent[k][u] if u == v: return u # Now find LCA for k in range(LOG-1, -1, -1): if parent[k][u] != -1 and parent[k][u] != parent[k][v]: u = parent[k][u] v = parent[k][v] return parent[0][u] # Precompute the path from u to ancestor def get_path(u, ancestor): path = [] while u != ancestor: path.append(u) u = parent[0][u] path.append(ancestor) return path # Sort adjacency lists by weight for u in range(1, N+1): edges[u].sort(key=lambda x: x[1]) Q = int(input()) for _ in range(Q): x, y = map(int, input().split()) if x == y: print(0) continue l = lca(x, y) path_x = get_path(x, l) path_y = get_path(y, l) path = path_x[:-1] + path_y[::-1] S = 0 # Compute S, the shortest path length # To compute S, we need to sum the edges along the path # Since the path is a list of nodes, need to find the edges between consecutive nodes # Precompute edge weights between consecutive nodes in the path S = 0 path_edges = set() # Store pairs (u, v) and (v, u) for i in range(len(path)-1): u, v = path[i], path[i+1] # Find the edge weight between u and v for (adj, w) in edges[u]: if adj == v: S += w path_edges.add((u, adj)) path_edges.add((adj, u)) break # Now, for each node in the path, find the minimum edge not in the path min_extra = float('inf') for i in range(len(path)): u = path[i] prev_node = path[i-1] if i > 0 else None next_node = path[i+1] if i < len(path)-1 else None # Iterate through sorted edges of u for (v, w) in edges[u]: # Check if this edge is part of the path if (prev_node is not None and v == prev_node) or (next_node is not None and v == next_node): continue if w < min_extra: min_extra = w break # Since edges are sorted, first valid is the smallest if min_extra == float('inf'): print(-1) else: print(S + 2 * min_extra) if __name__ == "__main__": main()