結果
| 問題 | No.1212 Second Path |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-26 15:50:31 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,700 bytes |
| コンパイル時間 | 244 ms |
| コンパイル使用メモリ | 82,240 KB |
| 実行使用メモリ | 348,492 KB |
| 最終ジャッジ日時 | 2025-03-26 15:51:37 |
| 合計ジャッジ時間 | 10,516 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | TLE * 1 -- * 44 |
ソースコード
import sys
from sys import stdin
from collections import deque
sys.setrecursionlimit(1 << 25)
def input():
return sys.stdin.readline()
def main():
N = int(input())
edges = [[] for _ in range(N+1)] # 1-based
for _ in range(N-1):
u, v, w = map(int, input().split())
edges[u].append((v, w))
edges[v].append((u, w))
# Preprocess for LCA
LOG = 20
parent = [[-1]*(N+1) for _ in range(LOG)]
depth = [0]*(N+1)
# BFS to set up parent[0] and depth
root = 1
q = deque()
q.append(root)
parent[0][root] = -1
while q:
u = q.popleft()
for v, w in edges[u]:
if parent[0][v] == -1 and v != root:
parent[0][v] = u
depth[v] = depth[u] + 1
q.append(v)
# Fill parent table
for k in range(1, LOG):
for v in range(1, N+1):
if parent[k-1][v] != -1:
parent[k][v] = parent[k-1][parent[k-1][v]]
def lca(u, v):
if depth[u] < depth[v]:
u, v = v, u
# Bring u to the same depth as v
for k in range(LOG-1, -1, -1):
if depth[u] - (1 << k) >= depth[v]:
u = parent[k][u]
if u == v:
return u
# Now find LCA
for k in range(LOG-1, -1, -1):
if parent[k][u] != -1 and parent[k][u] != parent[k][v]:
u = parent[k][u]
v = parent[k][v]
return parent[0][u]
# Precompute the path from u to ancestor
def get_path(u, ancestor):
path = []
while u != ancestor:
path.append(u)
u = parent[0][u]
path.append(ancestor)
return path
# Sort adjacency lists by weight
for u in range(1, N+1):
edges[u].sort(key=lambda x: x[1])
Q = int(input())
for _ in range(Q):
x, y = map(int, input().split())
if x == y:
print(0)
continue
l = lca(x, y)
path_x = get_path(x, l)
path_y = get_path(y, l)
path = path_x[:-1] + path_y[::-1]
S = 0
# Compute S, the shortest path length
# To compute S, we need to sum the edges along the path
# Since the path is a list of nodes, need to find the edges between consecutive nodes
# Precompute edge weights between consecutive nodes in the path
S = 0
path_edges = set() # Store pairs (u, v) and (v, u)
for i in range(len(path)-1):
u, v = path[i], path[i+1]
# Find the edge weight between u and v
for (adj, w) in edges[u]:
if adj == v:
S += w
path_edges.add((u, adj))
path_edges.add((adj, u))
break
# Now, for each node in the path, find the minimum edge not in the path
min_extra = float('inf')
for i in range(len(path)):
u = path[i]
prev_node = path[i-1] if i > 0 else None
next_node = path[i+1] if i < len(path)-1 else None
# Iterate through sorted edges of u
for (v, w) in edges[u]:
# Check if this edge is part of the path
if (prev_node is not None and v == prev_node) or (next_node is not None and v == next_node):
continue
if w < min_extra:
min_extra = w
break # Since edges are sorted, first valid is the smallest
if min_extra == float('inf'):
print(-1)
else:
print(S + 2 * min_extra)
if __name__ == "__main__":
main()
lam6er