結果
問題 |
No.124 門松列(3)
|
ユーザー |
![]() |
提出日時 | 2025-03-26 15:50:45 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 146 ms / 5,000 ms |
コード長 | 3,345 bytes |
コンパイル時間 | 388 ms |
コンパイル使用メモリ | 82,084 KB |
実行使用メモリ | 93,864 KB |
最終ジャッジ日時 | 2025-03-26 15:51:46 |
合計ジャッジ時間 | 3,536 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
ソースコード
import sys from collections import deque def is_kadomatsu(a, b, c): if a == b or b == c or a == c: return False return (b > a and b > c) or (b < a and b < c) def main(): W, H = map(int, sys.stdin.readline().split()) grid = [] for _ in range(H): row = list(map(int, sys.stdin.readline().split())) grid.append(row) start_x, start_y = 1, 1 start_val = grid[start_y - 1][start_x - 1] goal_x, goal_y = W, H visited = [[[[-1 for _ in range(10)] for __ in range(10)] for ___ in range(H+2)] for ____ in range(W+2)] q = deque() q.append((start_x, start_y, 0, 0, 0)) # a=0, b=0 denotes None visited[start_x][start_y][0][0] = 0 directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] answer = -1 while q: x, y, a_prev, b_prev, steps = q.popleft() if x == goal_x and y == goal_y: answer = steps break for dx, dy in directions: nx = x + dx ny = y + dy if 1 <= nx <= W and 1 <= ny <= H: new_val = grid[ny-1][nx-1] # Check Kadomatsu condition if needed if a_prev != 0 or b_prev != 0: # Convert 0 to None for checking a = a_prev if a_prev != 0 else None b = b_prev if b_prev != 0 else None if a is not None and b is not None: if not is_kadomatsu(a, b, new_val): continue else: # First two steps, no need to check pass # Compute new_a and new_b if a_prev == 0 and b_prev == 0: new_a = start_val new_b = new_val else: new_a = b_prev new_b = new_val # Convert to storage format (0 for None) na_stored = new_a if new_a is not None else 0 nb_stored = new_b if new_b is not None else 0 # Wait, no, new_a and new_b are computed from previous stored values (0 represents None) # Wait, the code above uses a_prev and b_prev which are stored as 0 for None. # So when a_prev and b_prev are 0, it's the initial state. # After the first move, new_a is start_val, new_b is new_val, which are stored as non-zero. # So in the code, the stored a_prev and b_prev are 0 for the initial state. # For subsequent states, a_prev and b_prev are non-zero. # Compute stored new_a and new_b if a_prev == 0 and b_prev == 0: stored_new_a = start_val stored_new_b = new_val else: stored_new_a = b_prev stored_new_b = new_val if visited[nx][ny][stored_new_a][stored_new_b] == -1 or steps + 1 < visited[nx][ny][stored_new_a][stored_new_b]: visited[nx][ny][stored_new_a][stored_new_b] = steps + 1 q.append((nx, ny, stored_new_a, stored_new_b, steps + 1)) print(answer) if __name__ == "__main__": main()