結果
| 問題 | No.124 門松列(3) |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-26 15:50:45 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 146 ms / 5,000 ms |
| コード長 | 3,345 bytes |
| コンパイル時間 | 388 ms |
| コンパイル使用メモリ | 82,084 KB |
| 実行使用メモリ | 93,864 KB |
| 最終ジャッジ日時 | 2025-03-26 15:51:46 |
| 合計ジャッジ時間 | 3,536 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
import sys
from collections import deque
def is_kadomatsu(a, b, c):
if a == b or b == c or a == c:
return False
return (b > a and b > c) or (b < a and b < c)
def main():
W, H = map(int, sys.stdin.readline().split())
grid = []
for _ in range(H):
row = list(map(int, sys.stdin.readline().split()))
grid.append(row)
start_x, start_y = 1, 1
start_val = grid[start_y - 1][start_x - 1]
goal_x, goal_y = W, H
visited = [[[[-1 for _ in range(10)] for __ in range(10)] for ___ in range(H+2)] for ____ in range(W+2)]
q = deque()
q.append((start_x, start_y, 0, 0, 0)) # a=0, b=0 denotes None
visited[start_x][start_y][0][0] = 0
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
answer = -1
while q:
x, y, a_prev, b_prev, steps = q.popleft()
if x == goal_x and y == goal_y:
answer = steps
break
for dx, dy in directions:
nx = x + dx
ny = y + dy
if 1 <= nx <= W and 1 <= ny <= H:
new_val = grid[ny-1][nx-1]
# Check Kadomatsu condition if needed
if a_prev != 0 or b_prev != 0:
# Convert 0 to None for checking
a = a_prev if a_prev != 0 else None
b = b_prev if b_prev != 0 else None
if a is not None and b is not None:
if not is_kadomatsu(a, b, new_val):
continue
else:
# First two steps, no need to check
pass
# Compute new_a and new_b
if a_prev == 0 and b_prev == 0:
new_a = start_val
new_b = new_val
else:
new_a = b_prev
new_b = new_val
# Convert to storage format (0 for None)
na_stored = new_a if new_a is not None else 0
nb_stored = new_b if new_b is not None else 0
# Wait, no, new_a and new_b are computed from previous stored values (0 represents None)
# Wait, the code above uses a_prev and b_prev which are stored as 0 for None.
# So when a_prev and b_prev are 0, it's the initial state.
# After the first move, new_a is start_val, new_b is new_val, which are stored as non-zero.
# So in the code, the stored a_prev and b_prev are 0 for the initial state.
# For subsequent states, a_prev and b_prev are non-zero.
# Compute stored new_a and new_b
if a_prev == 0 and b_prev == 0:
stored_new_a = start_val
stored_new_b = new_val
else:
stored_new_a = b_prev
stored_new_b = new_val
if visited[nx][ny][stored_new_a][stored_new_b] == -1 or steps + 1 < visited[nx][ny][stored_new_a][stored_new_b]:
visited[nx][ny][stored_new_a][stored_new_b] = steps + 1
q.append((nx, ny, stored_new_a, stored_new_b, steps + 1))
print(answer)
if __name__ == "__main__":
main()
lam6er