結果

問題 No.1978 Permutation Repetition
ユーザー lam6er
提出日時 2025-03-26 15:52:42
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 99 ms / 2,000 ms
コード長 2,824 bytes
コンパイル時間 244 ms
コンパイル使用メモリ 81,908 KB
実行使用メモリ 84,496 KB
最終ジャッジ日時 2025-03-26 15:53:13
合計ジャッジ時間 4,442 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 44
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import math
from collections import defaultdict
MOD = 10**9 + 7
def main():
N, M = map(int, sys.stdin.readline().split())
A = list(map(int, sys.stdin.readline().split()))
A = [a - 1 for a in A] # 0-based index
# Precompute combinations and factorials up to 1000
max_n = 1000
comb = [[0] * (max_n + 1) for _ in range(max_n + 1)]
comb[0][0] = 1
for i in range(1, max_n + 1):
comb[i][0] = 1
for j in range(1, i + 1):
comb[i][j] = (comb[i-1][j-1] + comb[i-1][j]) % MOD
fact = [1] * (max_n + 1)
for i in range(1, max_n + 1):
fact[i] = fact[i-1] * i % MOD
# Function to get all divisors of M
def get_divisors(M):
factors = {}
temp = M
i = 2
while i * i <= temp:
while temp % i == 0:
factors[i] = factors.get(i, 0) + 1
temp //= i
i += 1
if temp > 1:
factors[temp] = 1
divisors = [1]
for p in factors:
exponents = []
current = 1
for _ in range(factors[p]):
current *= p
exponents.append(current)
new_divisors = []
for d in divisors:
for e in exponents:
new_divisors.append(d * e)
divisors += new_divisors
divisors = list(set(divisors))
divisors.sort()
return divisors
divisors_M = get_divisors(M)
# Decompose A into cycles
visited = [False] * N
cnt = defaultdict(int)
for i in range(N):
if not visited[i]:
cycle_len = 0
current = i
while not visited[current]:
visited[current] = True
current = A[current]
cycle_len += 1
cnt[cycle_len] += 1
# Calculate answer
answer = 1
for k in cnt:
c = cnt[k]
valid_g = []
for g in divisors_M:
if M % g != 0:
continue # should not happen as divisors_M are divisors of M
m_over_g = M // g
if math.gcd(k, m_over_g) == 1:
valid_g.append(g)
valid_g.sort()
dp = [0] * (c + 1)
dp[0] = 1
for i in range(1, c + 1):
for g in valid_g:
if g > i:
continue
ways = comb[i-1][g-1]
merge_ways = pow(k, g-1, MOD) * fact[g-1] % MOD
term = dp[i - g] * ways % MOD
term = term * merge_ways % MOD
dp[i] = (dp[i] + term) % MOD
contribution = dp[c]
if contribution == 0:
print(0)
return
answer = answer * contribution % MOD
print(answer % MOD)
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0