結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-26 15:54:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,969 bytes |
| コンパイル時間 | 327 ms |
| コンパイル使用メモリ | 82,036 KB |
| 実行使用メモリ | 140,684 KB |
| 最終ジャッジ日時 | 2025-03-26 15:55:00 |
| 合計ジャッジ時間 | 9,585 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 3 TLE * 1 -- * 59 |
ソースコード
import sys
MOD = 998244353
def determinant(matrix, n):
mat = [row[:] for row in matrix]
det = 1
sign = 1
for col in range(n):
pivot = -1
for row in range(col, n):
if mat[row][col] != 0:
pivot = row
break
if pivot == -1:
return 0
if pivot != col:
mat[col], mat[pivot] = mat[pivot], mat[col]
sign = -sign
pivot_val = mat[col][col]
det = (det * pivot_val) % MOD
inv_pivot = pow(pivot_val, MOD - 2, MOD)
for row in range(col + 1, n):
factor = (mat[row][col] * inv_pivot) % MOD
for c in range(col, n):
mat[row][c] = (mat[row][c] - factor * mat[col][c]) % MOD
det = (det * sign) % MOD
return det
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
M0 = []
for _ in range(N):
row = list(map(int, input[ptr:ptr+N]))
ptr += N
M0.append([x % MOD for x in row])
M1 = []
for _ in range(N):
row = list(map(int, input[ptr:ptr+N]))
ptr += N
M1.append([x % MOD for x in row])
# Precompute factorials
fact = [1] * (N + 1)
for i in range(1, N + 1):
fact[i] = fact[i-1] * i % MOD
# Compute y_i = det(M0 + x_i * M1) for x_i in 0..N
y = []
for x_val in range(N + 1):
M = []
for i in range(N):
row = []
for j in range(N):
val = (M0[i][j] + x_val * M1[i][j]) % MOD
row.append(val)
M.append(row)
det = determinant(M, N)
y.append(det % MOD)
# Compute d_i = factorial[i] * factorial[N -i] * (-1)^(N -i) mod MOD
d = []
for i in range(N + 1):
term = (fact[i] * fact[N - i]) % MOD
if (N - i) % 2 == 1:
term = (-term) % MOD
d.append(term)
# Compute P(x) = product_{j=0 to N} (x - j)
P = [1]
for j in range(N + 1):
new_P = [0] * (len(P) + 1)
for k in range(len(P)):
new_P[k] = (new_P[k] + P[k] * (-j)) % MOD
new_P[k + 1] = (new_P[k + 1] + P[k]) % MOD
P = new_P
# Compute N_i(x) by dividing P by (x - i) for each i
N_i_coeffs = []
for i in range(N + 1):
Q = [0] * (N + 1)
Q[N] = P[N + 1]
for k in range(N - 1, -1, -1):
Q[k] = (P[k + 1] + i * Q[k + 1]) % MOD
N_i_coeffs.append(Q)
# Compute inverse of d[i]
inv_d = [pow(di, MOD - 2, MOD) for di in d]
# Compute coefficients a_0 to a_N
a = [0] * (N + 1)
for k in range(N + 1):
total = 0
for i in range(N + 1):
term = (y[i] * inv_d[i]) % MOD
term = (term * N_i_coeffs[i][k]) % MOD
total = (total + term) % MOD
a[k] = total % MOD
for coeff in a:
print(coeff)
if __name__ == '__main__':
main()
lam6er