結果
問題 |
No.3075 Mex Recurrence Formula
|
ユーザー |
![]() |
提出日時 | 2025-03-28 21:37:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 483 ms / 2,000 ms |
コード長 | 4,297 bytes |
コンパイル時間 | 418 ms |
コンパイル使用メモリ | 82,464 KB |
実行使用メモリ | 121,972 KB |
最終ジャッジ日時 | 2025-03-28 21:37:22 |
合計ジャッジ時間 | 13,302 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 46 |
ソースコード
from collections import deque, defaultdict, Counter from bisect import bisect_left, bisect_right from itertools import permutations, combinations from heapq import heappop, heappush import math, sys # input = sys.stdin.readline _int = lambda x: int(x)-1 MOD = 998244353 #10**9+7 INF = 1<<60 Yes, No = "Yes", "No" import typing class SegTree: @staticmethod def _ceil_pow2(n: int) -> int: x = 0 while (1 << x) < n: x += 1 return x def __init__(self, op: typing.Callable[[typing.Any, typing.Any], typing.Any], e: typing.Any, v: typing.Union[int, typing.List[typing.Any]]) -> None: self._op = op self._e = e if isinstance(v, int): v = [e] * v self._n = len(v) self._log = SegTree._ceil_pow2(self._n) self._size = 1 << self._log self._d = [e] * (2 * self._size) for i in range(self._n): self._d[self._size + i] = v[i] for i in range(self._size - 1, 0, -1): self._update(i) def set(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += self._size self._d[p] = x for i in range(1, self._log + 1): self._update(p >> i) def get(self, p: int) -> typing.Any: assert 0 <= p < self._n return self._d[p + self._size] def prod(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n sml = self._e smr = self._e left += self._size right += self._size while left < right: if left & 1: sml = self._op(sml, self._d[left]) left += 1 if right & 1: right -= 1 smr = self._op(self._d[right], smr) left >>= 1 right >>= 1 return self._op(sml, smr) def all_prod(self) -> typing.Any: return self._d[1] def max_right(self, left: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= left <= self._n assert f(self._e) if left == self._n: return self._n left += self._size sm = self._e first = True while first or (left & -left) != left: first = False while left % 2 == 0: left >>= 1 if not f(self._op(sm, self._d[left])): while left < self._size: left *= 2 if f(self._op(sm, self._d[left])): sm = self._op(sm, self._d[left]) left += 1 return left - self._size sm = self._op(sm, self._d[left]) left += 1 return self._n def min_left(self, right: int, f: typing.Callable[[typing.Any], bool]) -> int: assert 0 <= right <= self._n assert f(self._e) if right == 0: return 0 right += self._size sm = self._e first = True while first or (right & -right) != right: first = False right -= 1 while right > 1 and right % 2: right >>= 1 if not f(self._op(self._d[right], sm)): while right < self._size: right = 2 * right + 1 if f(self._op(self._d[right], sm)): sm = self._op(self._d[right], sm) right -= 1 return right + 1 - self._size sm = self._op(self._d[right], sm) return 0 def _update(self, k: int) -> None: self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1]) N, X = map(int, input().split()) A = list(map(int, input().split())) if X <= N: print(A[X-1]) exit() X -= N def op(a, b): return a+b e = 0 S = SegTree(op, e, [1]*(N+1)) C = [0]*(N+1) def add(a): if a > N: return C[a] += 1 S.set(a, 0) def delete(a): if a > N: return C[a] -= 1 if C[a] == 0: S.set(a, 1) for a in A: add(a) li = [] for i in range(N+1): r = S.max_right(0, lambda x: x == 0) add(r) li.append(r) if i == N: break delete(A[i]) X %= N+1 print(li[X-1])