結果
| 問題 |
No.3075 Mex Recurrence Formula
|
| コンテスト | |
| ユーザー |
manuo
|
| 提出日時 | 2025-03-28 21:37:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 483 ms / 2,000 ms |
| コード長 | 4,297 bytes |
| コンパイル時間 | 418 ms |
| コンパイル使用メモリ | 82,464 KB |
| 実行使用メモリ | 121,972 KB |
| 最終ジャッジ日時 | 2025-03-28 21:37:22 |
| 合計ジャッジ時間 | 13,302 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 46 |
ソースコード
from collections import deque, defaultdict, Counter
from bisect import bisect_left, bisect_right
from itertools import permutations, combinations
from heapq import heappop, heappush
import math, sys
# input = sys.stdin.readline
_int = lambda x: int(x)-1
MOD = 998244353 #10**9+7
INF = 1<<60
Yes, No = "Yes", "No"
import typing
class SegTree:
@staticmethod
def _ceil_pow2(n: int) -> int:
x = 0
while (1 << x) < n:
x += 1
return x
def __init__(self,
op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
self._op = op
self._e = e
if isinstance(v, int):
v = [e] * v
self._n = len(v)
self._log = SegTree._ceil_pow2(self._n)
self._size = 1 << self._log
self._d = [e] * (2 * self._size)
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p + self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2 * right + 1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
N, X = map(int, input().split())
A = list(map(int, input().split()))
if X <= N:
print(A[X-1])
exit()
X -= N
def op(a, b): return a+b
e = 0
S = SegTree(op, e, [1]*(N+1))
C = [0]*(N+1)
def add(a):
if a > N: return
C[a] += 1
S.set(a, 0)
def delete(a):
if a > N: return
C[a] -= 1
if C[a] == 0:
S.set(a, 1)
for a in A:
add(a)
li = []
for i in range(N+1):
r = S.max_right(0, lambda x: x == 0)
add(r)
li.append(r)
if i == N: break
delete(A[i])
X %= N+1
print(li[X-1])
manuo