結果
問題 | No.3075 Mex Recurrence Formula |
ユーザー |
|
提出日時 | 2025-03-28 22:03:54 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 143 ms / 2,000 ms |
コード長 | 4,840 bytes |
コンパイル時間 | 3,531 ms |
コンパイル使用メモリ | 284,928 KB |
実行使用メモリ | 9,740 KB |
最終ジャッジ日時 | 2025-03-28 22:04:09 |
合計ジャッジ時間 | 8,453 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 46 |
ソースコード
# include <bits/stdc++.h>using namespace std;using ll = long long;using ull = unsigned long long;const double pi = acos(-1);template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }template<class T>constexpr T hinf() { return inf<T>() / 2; }template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };ll MOD(ll x, ll m){return (x%m+m)%m; }ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)# define len(x) ((ll)(x).size())# define bit(n) (1LL << (n))# define pb push_back# define eb emplace_back# define exists(c, e) ((c).find(e) != (c).end())struct INIT{INIT(){std::ios::sync_with_stdio(false);std::cin.tie(0);cout << fixed << setprecision(20);}}INIT;namespace mmrz {void solve();}int main(){mmrz::solve();}#define debug(...) (static_cast<void>(0))using namespace mmrz;template<typename T>struct segment_tree {using F = function<T(T, T)>;int offset;int n;vector<T> node;F combine;T identify;segment_tree(int _n, F _combine, T _identify) : segment_tree(vector<T>(_n, _identify), _combine, _identify) {}segment_tree(const vector<T> &v, F _combine, T _identify) : n((int)v.size()), combine(_combine), identify(_identify) {offset = 1;while(offset < n)offset <<= 1;node.resize(2*offset, identify);for(int i = 0;i < n;i++)node[i + offset] = v[i];for(int i = offset - 1;i >= 1;i--)node[i] = combine(node[2 * i + 0], node[2 * i + 1]);}T operator[](int x) {return node[x + offset]; }void set(int x, T val){assert(0 <= x && x < n);x += offset;node[x] = val;while(x >>= 1){node[x] = combine(node[2 * x + 0], node[2 * x + 1]);}}T fold(int l, int r){assert(0 <= l && l <= r && r <= n);if(l == r)return identify;T L = identify, R = identify;for(l += offset, r += offset; l < r;l >>= 1, r >>= 1){if(l&1)L = combine(L, node[l++]);if(r&1)R = combine(node[--r], R);}return combine(L, R);}T all_fold() { return node[1]; };int max_right(const function<bool(T)> f, int l = 0){assert(0 <= l && l <= n);assert(f(identify));if(l == n)return n;l += offset;T sum = identify;do{while(l%2 == 0)l >>= 1;if(not f(combine(sum, node[l]))){while(l < offset){l <<= 1;if(f(combine(sum, node[l]))){sum = combine(sum, node[l]);l++;}}return l - offset;}sum = combine(sum, node[l]);l++;}while((l&-l) != l);return n;}int min_left(const function<bool(T)> f, int r = -1){if(r == 0)return 0;if(r == -1)r = n;r += offset;T sum = identify;do{--r;while(r > 1 && (r % 2))r >>= 1;if(not f(combine(node[r], sum))){while(r < offset){r = r*2 + 1;if(f(combine(node[r], sum))){sum = combine(node[r], sum);--r;}}return r+1 - offset;}sum = combine(node[r], sum);}while((r&-r) != r);return 0;}};void SOLVE(){ll n, m;cin >> n >> m;vector<int> a(n);for(auto &x : a){cin >> x;}m--;if(m < n){cout << a[m] << '\n';return;}for(auto &x : a){if(x >= n+2){x = n+2;}}ll md = (m-n)%(n+1);if(md == 0)md = n+1;segment_tree<int> seg(n+10, [](int l, int r){return min(l, r); }, hinf<int>());rep(i, n+1)seg.set(i, 0);rep(i, n)seg.set(a[i], seg[a[i]]+1);for(int i = n;i <= n+n+1;i++){int g = seg.max_right([&](int val){return val >= 1;}, 0);debug(g);a.pb(g);debug(a);seg.set(a[i-n], seg[a[i-n]]-1);seg.set(a[i], seg[a[i]]+1);}cout << a[n+md] << '\n';debug(a);}void mmrz::solve(){int t = 1;//cin >> t;while(t--)SOLVE();}